Tham khảo
+ Nếu P(x) có bậc lớn hơn hoặc bằng 4 => P(8) ≥ 84 = 4096 > 1995 => P(x) có bậc bé hơn hoặc bằng 3
+Nếu P(x) có bậc 2 hoặc 1 => P(8) ≤ 8.82 + 8.8 + 8 = 584 < 1995 => P(x) có bậc lớn hơn hoặc bằng 3
Từ 2 điều trên => P(x) có bậc 3
P(x)=ax3+bx2+cx+d=ax3+g(x) với g(x)=bx2+cx+dP(x)=ax3+bx2+cx+d=ax3+g(x) với g(x)=bx2+cx+d
Ta có:0≤G(8)≤8.82+8.8+8=5840≤G(8)≤8.82+8.8+8=584
1995=P(8)=a.83+G(8)≤a.83+5841995=P(8)=a.83+G(8)≤a.83+584
a.83+584≥1995⇒a≥1995−58483≈2,75⇒a≥3a.83+584≥1995⇒a≥1995−58483≈2,75⇒a≥3
Mặt khác nếu a ≥ 4 thì P(8)≥4.83=2048>1995P(8)≥4.83=2048>1995 => loại => a < 4
a ≥ 3 mà a < 4 => a = 3
P(x)=3x3+bx2+cx+dP(x)=3x3+bx2+cx+d
1995=P(8)=3.83+G(8)⇒G(8)=4951995=P(8)=3.83+G(8)⇒G(8)=495
Ta tiếp tục đánh giá tương tự như trên với b, c, d (b ≥ n và b < n+1 => b = n)
495=G(8)=b.82+c.8+d≤a.82+8.8+8⇒b≥6,6⇒b≥7495=G(8)=b.82+c.8+d≤a.82+8.8+8⇒b≥6,6⇒b≥7
Nếu b = 8 thì G(8)≥8.82=512>495G(8)≥8.82=512>495 => vô lí => b < 8
Từ 2 điều trên suy ra b = 7.
P(x)=3x3+7x2+cx+dP(x)=3x3+7x2+cx+d
1995=P(8)=3.83+7.82+8c+d⇒8c+d=111995=P(8)=3.83+7.82+8c+d⇒8c+d=11
Nếu c ≥ 2 thì 8c+d≥8.2=16>118c+d≥8.2=16>11 => vô lí => c > 2 => c = 1 hoặc c = 0
+c = 1 thì 8.1+d=11⇒d=38.1+d=11⇒d=3
Đa thức P(x)=3x3+7x2+x+3P(x)=3x3+7x2+x+3
+c = 0 thì 8.0 + d =11 => d = 11 > 8 (loại)
Kết luận: P(x)=3x3+7x2+x+3
+ Nếu P(x) có bậc lớn hơn hoặc bằng 4 => P(8) ≥ 84 = 4096 > 1995 => P(x) có bậc bé hơn hoặc bằng 3
+Nếu P(x) có bậc 2 hoặc 1 => P(8) ≤ 8.82 + 8.8 + 8 = 584 < 1995 => P(x) có bậc lớn hơn hoặc bằng 3
Từ 2 điều trên => P(x) có bậc 3
P(x)=ax3+bx2+cx+d=ax3+g(x) với g(x)=bx2+cx+dP(x)=ax3+bx2+cx+d=ax3+g(x) với g(x)=bx2+cx+d
Ta có:0≤G(8)≤8.82+8.8+8=5840≤G(8)≤8.82+8.8+8=584
1995=P(8)=a.83+G(8)≤a.83+5841995=P(8)=a.83+G(8)≤a.83+584
a.83+584≥1995⇒a≥1995−58483≈2,75⇒a≥3a.83+584≥1995⇒a≥1995−58483≈2,75⇒a≥3
Mặt khác nếu a ≥ 4 thì P(8)≥4.83=2048>1995P(8)≥4.83=2048>1995 => loại => a < 4
a ≥ 3 mà a < 4 => a = 3
P(x)=3x3+bx2+cx+dP(x)=3x3+bx2+cx+d
1995=P(8)=3.83+G(8)⇒G(8)=4951995=P(8)=3.83+G(8)⇒G(8)=495
Ta tiếp tục đánh giá tương tự như trên với b, c, d (b ≥ n và b < n+1 => b = n)
495=G(8)=b.82+c.8+d≤a.82+8.8+8⇒b≥6,6⇒b≥7495=G(8)=b.82+c.8+d≤a.82+8.8+8⇒b≥6,6⇒b≥7
Nếu b = 8 thì G(8)≥8.82=512>495G(8)≥8.82=512>495 => vô lí => b < 8
Từ 2 điều trên suy ra b = 7.
P(x)=3x3+7x2+cx+dP(x)=3x3+7x2+cx+d
1995=P(8)=3.83+7.82+8c+d⇒8c+d=111995=P(8)=3.83+7.82+8c+d⇒8c+d=11
Nếu c ≥ 2 thì 8c+d≥8.2=16>118c+d≥8.2=16>11 => vô lí => c > 2 => c = 1 hoặc c = 0
+c = 1 thì 8.1+d=11⇒d=38.1+d=11⇒d=3
Đa thức P(x)=3x3+7x2+x+3P(x)=3x3+7x2+x+3
+c = 0 thì 8.0 + d =11 => d = 11 > 8 (loại)
Kết luận: P(x)=3x3+7x2+x+3
+ Nếu P(x) có bậc lớn hơn hoặc bằng 4 => P(8) ≥ 84 = 4096 > 1995 => P(x) có bậc bé hơn hoặc bằng 3
+Nếu P(x) có bậc 2 hoặc 1 => P(8) ≤ 8.82 + 8.8 + 8 = 584 < 1995 => P(x) có bậc lớn hơn hoặc bằng 3
Từ 2 điều trên => P(x) có bậc 3
P(x)=ax3+bx2+cx+d=ax3+g(x) với g(x)=bx2+cx+dP(x)=ax3+bx2+cx+d=ax3+g(x) với g(x)=bx2+cx+d
Ta có:0≤G(8)≤8.82+8.8+8=5840≤G(8)≤8.82+8.8+8=584
1995=P(8)=a.83+G(8)≤a.83+5841995=P(8)=a.83+G(8)≤a.83+584
a.83+584≥1995⇒a≥1995−58483≈2,75⇒a≥3a.83+584≥1995⇒a≥1995−58483≈2,75⇒a≥3
Mặt khác nếu a ≥ 4 thì P(8)≥4.83=2048>1995P(8)≥4.83=2048>1995 => loại => a < 4
a ≥ 3 mà a < 4 => a = 3
P(x)=3x3+bx2+cx+dP(x)=3x3+bx2+cx+d
1995=P(8)=3.83+G(8)⇒G(8)=4951995=P(8)=3.83+G(8)⇒G(8)=495
Ta tiếp tục đánh giá tương tự như trên với b, c, d (b ≥ n và b < n+1 => b = n)
495=G(8)=b.82+c.8+d≤a.82+8.8+8⇒b≥6,6⇒b≥7495=G(8)=b.82+c.8+d≤a.82+8.8+8⇒b≥6,6⇒b≥7
Nếu b = 8 thì G(8)≥8.82=512>495G(8)≥8.82=512>495 => vô lí => b < 8
Từ 2 điều trên suy ra b = 7.
P(x)=3x3+7x2+cx+dP(x)=3x3+7x2+cx+d
1995=P(8)=3.83+7.82+8c+d⇒8c+d=111995=P(8)=3.83+7.82+8c+d⇒8c+d=11
Nếu c ≥ 2 thì 8c+d≥8.2=16>118c+d≥8.2=16>11 => vô lí => c > 2 => c = 1 hoặc c = 0
+c = 1 thì 8.1+d=11⇒d=38.1+d=11⇒d=3
Đa thức P(x)=3x3+7x2+x+3P(x)=3x3+7x2+x+3
+c = 0 thì 8.0 + d =11 => d = 11 > 8 (loại)
Kết luận: P(x)=3x3+7x2+x+3
+ Nếu P(x) có bậc lớn hơn hoặc bằng 4 => P(8) ≥ 84 = 4096 > 1995 => P(x) có bậc bé hơn hoặc bằng 3
+Nếu P(x) có bậc 2 hoặc 1 => P(8) ≤ 8.82 + 8.8 + 8 = 584 < 1995 => P(x) có bậc lớn hơn hoặc bằng 3
Từ 2 điều trên => P(x) có bậc 3
P(x)=ax3+bx2+cx+d=ax3+g(x) với g(x)=bx2+cx+dP(x)=ax3+bx2+cx+d=ax3+g(x) với g(x)=bx2+cx+d
Ta có:0≤G(8)≤8.82+8.8+8=5840≤G(8)≤8.82+8.8+8=584
1995=P(8)=a.83+G(8)≤a.83+5841995=P(8)=a.83+G(8)≤a.83+584
a.83+584≥1995⇒a≥1995−58483≈2,75⇒a≥3a.83+584≥1995⇒a≥1995−58483≈2,75⇒a≥3
Mặt khác nếu a ≥ 4 thì P(8)≥4.83=2048>1995P(8)≥4.83=2048>1995 => loại => a < 4
a ≥ 3 mà a < 4 => a = 3
P(x)=3x3+bx2+cx+dP(x)=3x3+bx2+cx+d
1995=P(8)=3.83+G(8)⇒G(8)=4951995=P(8)=3.83+G(8)⇒G(8)=495
Ta tiếp tục đánh giá tương tự như trên với b, c, d (b ≥ n và b < n+1 => b = n)
495=G(8)=b.82+c.8+d≤a.82+8.8+8⇒b≥6,6⇒b≥7495=G(8)=b.82+c.8+d≤a.82+8.8+8⇒b≥6,6⇒b≥7
Nếu b = 8 thì G(8)≥8.82=512>495G(8)≥8.82=512>495 => vô lí => b < 8
Từ 2 điều trên suy ra b = 7.
P(x)=3x3+7x2+cx+dP(x)=3x3+7x2+cx+d
1995=P(8)=3.83+7.82+8c+d⇒8c+d=111995=P(8)=3.83+7.82+8c+d⇒8c+d=11
Nếu c ≥ 2 thì 8c+d≥8.2=16>118c+d≥8.2=16>11 => vô lí => c > 2 => c = 1 hoặc c = 0
+c = 1 thì 8.1+d=11⇒d=38.1+d=11⇒d=3
Đa thức P(x)=3x3+7x2+x+3P(x)=3x3+7x2+x+3
+c = 0 thì 8.0 + d =11 => d = 11 > 8 (loại)
Kết luận: P(x)=3x3+7x2+x+3