Trên cung AB có số đo 90o của đường tròn (O), lấy điểm M sao cho cung AM có số đo 15o. Tính số đo của cung MB.
Cho đường tròn (O), hai đường kính AB và CD vuông góc với nhau. Trên cung nhỏ BC lấy điểm M sao cho số đo cung MB bằng hai lần số đo cung MC. Gọi N là giao điểm của AM và CD a) chứng minh ∆OMN cân b) chứng minh AM.AN = AO.AB
b: Xét ΔAON vuông tại O và ΔAMB vuông tại M co
góc OAN chung
=>ΔAON đồng dạngvới ΔAMB
=>AO/AM=AN/AB
=>AO*AB=AM*AN
Vẽ hình + giải luôn ạ
Ta có: M nằm trên cung AB
=>\(sđ\stackrel\frown{AM}+sđ\stackrel\frown{BM}=sđ\stackrel\frown{AB}\)
=>\(sđ\stackrel\frown{BM}=100^0-60^0=40^0\)
Cho đường tròn ( O,R) tia tiếp tuyến Ax, trên Ax lấy điểm M sao cho OM = 2R, Om cắt đường tròn O tại N
a) tính AM theo R
b) tính số đo góc ở tâm tạo bởi OA và ON
c) tính số đo cung nhỏ, cung lớn AN
a: Ta có: ΔOAM vuông tại A
=>\(OA^2+AM^2=OM^2\)
=>\(AM^2=\left(2R\right)^2-R^2=3R^2\)
=>\(AM=R\sqrt{3}\)
b: Xét ΔMOA vuông tại A có \(sinMOA=\dfrac{MA}{MO}=\dfrac{\sqrt{3}}{2}\)
nên \(\widehat{MOA}=60^0\)
=>\(\widehat{AON}=60^0\)
=>\(\widehat{\left(ON;OA\right)}=60^0\)
c: Xét (O) có
\(\widehat{AON}\) là góc ở tâm chắn cung AN nhỏ
Do đó: \(sđ\stackrel\frown{AN}_{nhỏ}=\widehat{AON}=60^0\)
Số đo cung lớn AN là:
\(360-60=300^0\)
1. AB là một cung của (O;R) với sđ cung AB nhỏ là 80 độ. khi đó , góc AOB có số đo là?
2. cho đường tròn (O;R) và dây AB=R. trên cung AB lớn lấy điểm M. số đo cung AMB là?
3. số đo góc tạo bởi tia tiếp tuyến và dây cung bằng?
4. hình tròn ngoại tiếp lục giác đều cạnh 5 cm có diện tích là?
trắc nghiệm thôi..nên giải giúp tôi với ạ^^
Cho tam giác cân AOB có \(\widehat{AOB}\) = 120°. Vẽ đường tròn (O; OA). Gọi M là một điểm nằm trên đường tròn, biết sđ\(\stackrel\frown{AM}\) = 50°. Tính số đo cung nhỏ BM và số đo cung lớn BM.
Trên đường tròn tâm O lấy ba điểm A, B, C sao cho A O B ^ = 100 o s đ A C ⏜ = 45 o . Tính số đo của cung nhỏ BC và cung lớn BC. (Xét cả hai trường hợp: điểm C nằm trên cung nhỏ AB, điểm C nằm trên cung lớn AB).
* Trường hợp 1 . Điểm C nằm trên cung lớn AB.
Do điểm C nằm trên cung lớn AB nên tia OA nằm giữa hai tia OB và OC.
Do nên tia OA nằm giữa hai tia OB và OC hay A nằm trên cung BC.
Suy ra: = 1000+ 450 = 1450
Khi đó, số đo cung nhỏ BC là 1450 ( bằng góc ở tâm )
Số đo cung lớn BC là: 3600 - 1450 = 2150
* Trường hợp 2: Điểm C nằm trên cung nhỏ AB
Vì điểm C nằm trên cung nhỏ AB nên OC nằm giữa OA và OB
Ta có: = 1000- 450 = 550
Khi đó, số đo cung nhỏ BC là 550
Số đo cung lớn BC là: 3600- 550 = 3050
Trên đường tròn tâm O lấy ba điểm A, B, C sao cho A O B ^ = 100 ° sd A C ^ = 45 ° . Tính số đo của cung nhỏ BC và cung lớn BC. (Xét cả hai trường hợp: điểm C nằm trên cung nhỏ AB, điểm C nằm trên cung lớn AB).
* Trường hợp 1 . Điểm C nằm trên cung lớn AB.
Do điểm C nằm trên cung lớn AB nên tia OA nằm giữa hai tia OB và OC.
Do nên tia OA nằm giữa hai tia OB và OC hay A nằm trên cung BC.
Suy ra: = 100 0 + 45 0 = 145 0
Khi đó, số đo cung nhỏ BC là 145 ° ( bằng góc ở tâm )
Số đo cung lớn BC là: 360 0 − 145 0 = 215 0
* Trường hợp 2: Điểm C nằm trên cung nhỏ AB
Vì điểm C nằm trên cung nhỏ AB nên OC nằm giữa OA và OB
Ta có: = 100 0 − 45 0 = 55 0
Khi đó, số đo cung nhỏ BC là 55 0
Số đo cung lớn BC là: 360 0 − 55 0 = 305 0
Kiến thức áp dụng
+ Góc có đỉnh trùng với tâm đường tròn được gọi là góc ở tâm.
+ Số đo của cung nhỏ bằng số đo của góc ở tâm chắn cung đó.
+ Số đo của cung lớn bằng hiệu của 360º và số đo của cung nhỏ (có chung hai mút với cung lớn).
Từ một điểm a trên đường tròn tâm o vẽ tiếp tuyến ax trên đường tròn lấy điểm b ,OB cắt tia ax tại điểm m sao cho góc amo = 36 độ tính số đo cung AB nhỏ và cung AB lớn
góc AOB=90-36=54 độ
=>sđ cung AB nhỏ=54 độ
sđ cung AB lớn=360-54=306 độ
a) Trên đường tròn với điểm gốc là A. Điểm M thuộc đường tròn sao cho cung lượng giác AM có số đo 60độ. Gọi N là điểm đối xứng với điểm M qua trục Oy, số đo cung là bao nhiêu
b) Trong 20 giây bánh xe của xe gắn máy quay đc 60 vòng. Tính độ dài quãng đường xe gắn máy đi được trong 3 phút, biết rằng bán kính xe gắn máy là 6,5cm.
Cho đường tròn (O;R) và dây cung AB=R. Trên cung nhỏ AB lấy điểm M, số đo AMB là:
Xét ΔOAB có OA=OB=AB
nên ΔOAB đều
=>\(\widehat{AOB}=60^0\)
Xét (O) có \(\widehat{AMB}\) là góc nội tiếp chắn cung AB
nên \(\widehat{AMB}=\dfrac{1}{2}\cdot\widehat{AOB}=\dfrac{1}{2}\cdot60^0=30^0\)