Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
5 tháng 11 2018 lúc 12:18

Đăng Nhật Hoàng
Xem chi tiết
Gia Khánh Bùi
7 tháng 12 2021 lúc 21:34

SSH:(20152-12):10+1=2015

(12-22)+(32-42)+(52-62)+...+(20132-20142)+20152

-10+(-10)+(-10)+...+(-10)+20152

-10x(2015-1):2+20152=12

=> C=12

Khách vãng lai đã xóa
Chang
Xem chi tiết
Huỳnh Quang Sang
22 tháng 10 2020 lúc 9:40

a) Ta có : 2005.2007 = (2006 - 1)(2006 + 1) = 20062 - 12 = 20062 - 1 ( cái khúc này sửa : 2005.2001 thành 2005.2007)

Mà B = 20062

=> 20062 - 1 < 20062 

=> A < B

b) Ta có : B = (2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

                B =  (2 - 1)(2 + 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

                B = (22 - 1)(22 + 1)(24 + 1)(28 + 1)(216 + 1)

                B = (24 - 1)(24 + 1)(28 + 1)(216 + 1)

                B = (28 - 1)(28 + 1)(216 + 1) = (216 - 1)(216 + 1) = 232 - 1

Mà C = 232

=> B < C 

c) Tương tự như câu b

Khách vãng lai đã xóa
Lâm Hoàng
Xem chi tiết
Nguyễn Hoàng Minh
23 tháng 10 2021 lúc 8:41

\(1,\\ a,=\left[x^3\left(x-2\right)-4x\left(x-2\right)\right]:\left(x^2-4\right)\\ =x\left(x^2-4\right)\left(x-2\right):\left(x^2-4\right)=x\left(x-2\right)\\ b,=\left(2014-14\right)^2=2000^2=4000000\\ 2,\\ A=2015\cdot2013\cdot\left(2014^2+1\right)\\ A=\left(2014^2-1\right)\left(2014^2+1\right)\\ A=2014^4-1< B=2014^4\)

Phan Lâm Thanh Trúc
Xem chi tiết
Kiều Vũ Linh
9 tháng 1 lúc 13:58

Bài 1

a) S = 1 + 2 + 2² + 2³ + ... + 2²⁰²³

2S = 2 + 2² + 2³ + 2⁴ + ... + 2²⁰²⁴

S = 2S - S = (2 + 2² + 2³ + ... + 2²⁰²⁴) - (1 + 2 + 2² + 2³)

= 2²⁰²⁴ - 1

b) B = 2²⁰²⁴

B - 1 = 2²⁰²⁴ - 1 = S

B = S + 1

Vậy B > S

a,

\(S=1+2+2^2+...+2^{2023}\)

\(2S=2+2^2+2^3+...+2^{2024}\)

\(\Rightarrow S=2^{2024}-1\)

b.

Do \(2^{2024}-1< 2^{2024}\)

\(\Rightarrow S< B\)

2.

\(H=3+3^2+...+3^{2022}\)

\(\Rightarrow3H=3^2+3^3+...+3^{2023}\)

\(\Rightarrow3H-H=3^{2023}-3\)

\(\Rightarrow2H=3^{2023}-3\)

\(\Rightarrow H=\dfrac{3^{2023}-3}{2}\)

Kiều Vũ Linh
9 tháng 1 lúc 14:05

Bài 2

H = 3 + 3² + 3³ + ... + 3²⁰²²

⇒ 3H = 3² + 3³ + 3⁴ + ... + 3²⁰²³

⇒2H = 3H - H

= (3² + 3³ + 3⁴ + ... + 3²⁰²³) - (3 + 3² + 3³ + ... + 3²⁰²²)

= 3²⁰²³ - 3

⇒ H = (3²⁰²³ - 3) : 2

Hà Văn Minh Hiếu
Xem chi tiết
Tran Le Khanh Linh
20 tháng 3 2020 lúc 21:17

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

Bạn xem cách làm tại đây nhé!

Khách vãng lai đã xóa
Hà Thị Tuyết Mai
Xem chi tiết
Gọi tôi là Ác Ma
Xem chi tiết
bé thỏ 123
15 tháng 5 2022 lúc 22:13

undefined

bé thỏ 123
15 tháng 5 2022 lúc 22:14

undefined

bé thỏ 123
15 tháng 5 2022 lúc 22:16

giải ròi đó nhoa

Thắm Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 8 2021 lúc 21:58

Ta có: \(A=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)\)

\(=2^{32}-1< 2^{32}\)

\(\Leftrightarrow A< B\)

Chấn Hưng
Xem chi tiết
Kiều Vũ Linh
3 tháng 12 2023 lúc 10:18

\(32^{15}=\left(2^5\right)^{15}=2^{5.15}=2^{75}\)

\(4^{39}=\left(2^2\right)^{39}=2^{2.39}=2^{78}\)

Do \(2^{78}>2^{75}\)

\(\Rightarrow4^{39}>32^{15}\)

\(\Rightarrow1+4+4^2+...+4^{39}>32^{15}\)

\(\Rightarrow3\left(1+4+4^2+...+4^{39}\right)>32^{15}\)

Vậy \(A>B\)

Chấn Hưng
3 tháng 12 2023 lúc 10:17

mọi ng giúp mik với