Tìm điều kiện xác định cho mỗi căn thức bậc ba sau:
a) \(\sqrt[3]{x^2+x};\)
b) \(\sqrt[3]{\dfrac{1}{x-9}}\).
Tìm điều kiện xác định của các biểu thức sau:
a) 2018\(\sqrt{2-\sqrt{x-1}}\)
b) \(\sqrt{3-\sqrt{x}}\)
Lời giải:
a. ĐKXĐ:
\(\left\{\begin{matrix} x-1\geq 0\\ 2\geq \sqrt{x-1}\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x\geq 1\\ 4\geq x-1\end{matrix}\right. \Leftrightarrow 5\geq x\geq 1\)
b. ĐKXĐ:
\(\left\{\begin{matrix} x\geq 0\\ 3\geq \sqrt{x}\end{matrix}\right.\Leftrightarrow 0\leq x\leq 9\)
Tìm điều kiện xác định căn bậc hai cũa x^2-x+1
tìm điều kiện xác định căn thức
\(\sqrt{\frac{2}{3}x-\frac{1}{5}}\)
ĐKXD : \(\sqrt{\frac{2}{3}x-\frac{1}{5}}\ge0\)
\(\Leftrightarrow\frac{2}{3}x-\frac{1}{5}\ge0\)
\(\Leftrightarrow\frac{2}{3}x\ge\frac{1}{5}\\ \Leftrightarrow x\ge\frac{3}{10}\)
TÌM ĐIỀU KIỆN ĐỂ BIỂU THỨC TRONG CĂN BẬC HAI CÓ NGHĨA
1,\(\sqrt{x^2-3x+2}\)
2,\(\sqrt{\dfrac{x-6}{x-2}}\)
3,\(\sqrt{\dfrac{2x-4}{5-x}}\)
1) ĐKXĐ: \(\left[{}\begin{matrix}x\ge2\\x\le1\end{matrix}\right.\)
2) ĐKXĐ: \(\dfrac{x-6}{x-2}\ge0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2< 0\\x-6\ge0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x< 2\\x\ge6\end{matrix}\right.\)
3) ĐKXĐ: \(\dfrac{2x-4}{5-x}\ge0\)
\(\Leftrightarrow\dfrac{x-2}{x-5}\le0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-2\ge0\\x-5< 0\end{matrix}\right.\Leftrightarrow2\le x< 5\)
Tìm điều kiện để căn thức sau xác định \(\sqrt{x^2+5x+4}\)
Căn thức xác định \(\Leftrightarrow x^2+5x+4\ge0\)
\(\Leftrightarrow\left(x+1\right)\left(x+4\right)\ge0\)
Do đó: (x+1) và (x+4) là 2 số cùng dấu.
TH1: \(\hept{\begin{cases}x+1\ge0\\x+4\ge0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge-1\\x\ge-4\end{cases}\Leftrightarrow}x\ge-1}\)
TH2: \(\hept{\begin{cases}x+1\le0\\x+4\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\le-1\\x\le-4\end{cases}\Leftrightarrow}x\le-4}\)
Vậy \(\orbr{\begin{cases}x\ge-1\\x\le-4\end{cases}}\)
Chúc bạn học tốt.
Tìm điều kiện xác định của các biểu thức sau:
A.2x+1/x^2+7x+10
B.3-2x/x^2-4+x/2-x
Help pls
a: ĐKXĐ: \(x\notin\left\{-2;-5\right\}\)
b: ĐKXĐ: \(x\notin\left\{2;-2\right\}\)
Câu1:Căn bậc 2 của số a ko âm là gì Câu2:Cho2đường tròn (O;4cm),(O';3cm)và OO'=5cm khi đó vị trí tương đối của (O) và (O') là? Câu3:Cho biểu thức: P=(cănx/căn x -2+căn x/căn x +2):2 cănx/x-4 a)Tìm điều kiện của x để P được xác định b)Rút gọn P c)Tìm x để P>4 Câu4:Cho hàm số y=(m-1)x+2m-5(m#1)(1) a)Tìm giá trị của m để đường thẳng có phương trình (1)//vs đường thẳng y=3x+1 b)Vẽ đồ thị của hàm số(1)khi m=1,5.Tính góc tạo bởi đường thẳng vẽ đc và trục hoành(kết quả làm tròn đến phút) Câu5:Cho x là một góc nhọn,trong các đẳng thức sau đẳng thức nào đúng,vì sao? A.sinx+cosx=1 B.sinx=cos(90°-x) C.tgx=tg(90°-x) D.A,B,C đều đúng (Mọi người giúp e vs,e cần gấp ạ)
Câu 5: B
Câu 3:
a: ĐKXĐ: \(\left\{{}\begin{matrix}x>=0\\x\ne4\end{matrix}\right.\)
b: \(P=\left(\dfrac{\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}}{\sqrt{x}+2}\right):\dfrac{2\sqrt{x}}{x-4}\)
\(=\dfrac{\sqrt{x}\left(\sqrt{x}+2\right)+\sqrt{x}\left(\sqrt{x}-2\right)}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{x-4}{2\sqrt{x}}\)
\(=\dfrac{x+2\sqrt{x}+x-2\sqrt{x}}{x-4}\cdot\dfrac{x-4}{2\sqrt{x}}\)
\(=\dfrac{2x}{2\sqrt{x}}=\sqrt{x}\)
c: Để P>4 thì \(\sqrt{x}>4\)
=>x>16
\(\sqrt{x^2+6x+11}\)
\(\sqrt{\frac{\left(2x-3\right)\left(x+2\right)}{\left(x+3\right)^2}}\)
\(\sqrt{\frac{-x^2-5}{x^2+1}}\)
Tìm điều kiện xác định của mỗi căn thức
Giúp mình với mình đang cần gấp
a) ĐKXĐ: \(x^2+6x+11\ge0\)đúng\(\forall x\inℝ\)
b) ĐKXĐ: \(\hept{\begin{cases}\left(2x-3\right)\left(x+2\right)\ge0\\x+3\ne0\end{cases}\Leftrightarrow\orbr{\begin{cases}x\le-2,x\ne-3\\x\ge\frac{3}{2}\end{cases}}}\)
c) ĐKXĐ: \(-x^2-5\ge0\)Vô nghiệm\(\forall x\inℝ\)
Tìm điều kiện xác định của mỗi biểu thức
a)căn(x^2-3x+2)
b)căn(2x^2+4x+5)
g)căn(x^2+4x+5)
Bài làm:
a) \(\sqrt{x^2-3x+2}=\sqrt{\left(x-1\right)\left(x-2\right)}\)
Ta xét 2 trường hợp sau:
Nếu: \(\hept{\begin{cases}x-1\ge0\\x-2\ge0\end{cases}\Rightarrow\hept{\begin{cases}x\ge1\\x\ge2\end{cases}\Rightarrow}}x\ge2\)
Nếu: \(\hept{\begin{cases}x-2\le0\\x-1\le0\end{cases}\Rightarrow}\hept{\begin{cases}x\le2\\x\le1\end{cases}\Rightarrow}x\le1\)
Vậy \(\orbr{\begin{cases}x\ge2\\x\le1\end{cases}}\)
b) \(\sqrt{2x^2+4x+5}=\sqrt{\left(x+2\right)^2+x^2+1}\)
Mà \(\left(x+2\right)^2+x^2+1>0\left(\forall x\right)\)
Vậy biểu thức xác đinh với mọi x
c) \(\sqrt{x^2+4x+5}=\sqrt{\left(x+2\right)^2+1}\)
Mà \(\left(x+2\right)^2+1>0\left(\forall x\right)\)
Vậy biểu thức xác định với mọi x
Học tốt!!!!
1.
a. Tìm điều kiện đẻ căn thức bậc hai coa nghĩa
\(\sqrt{\dfrac{x^2}{2x-1}}\)
b. \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}.\sqrt[3]{\dfrac{1}{27}}\)
1.a) Để căn thức có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x^2}{2x-1}\ge0\\2x-1\ne0\end{matrix}\right.\)
\(\Leftrightarrow2x-1>0\Leftrightarrow x>\dfrac{1}{2}\)
Vậy...
b, \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}.\sqrt[3]{\dfrac{1}{27}}=\sqrt[3]{\dfrac{625}{5}}-\sqrt[3]{-\dfrac{216}{27}}=\sqrt[3]{125}-\sqrt[3]{-8}=5-\left(-2\right)=7\)
a) Để căn thức có nghĩa thì 2x-1>0
\(\Leftrightarrow2x>1\)
hay \(x>\dfrac{1}{2}\)
b) Ta có: \(\dfrac{\sqrt[3]{625}}{\sqrt[3]{5}}-\sqrt[3]{-216}\cdot\sqrt[3]{\dfrac{1}{27}}\)
\(=5-\left(-6\right)\cdot\dfrac{1}{3}\)
\(=5+6\cdot\dfrac{1}{3}=5+2=7\)