Tìm x,y,z biết:
\(\frac{x}{5}=\frac{y}{6}=\frac{z}{10}\)và x+y-z=63
1. Tìm các số x, y, z biết rằng:\(\frac{x}{5}=\frac{y}{6},\frac{y}{8}=\frac{z}{7}\) và x + y - z = 69
2. Tìm các số x, y, z biết rằng: \(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\) và 5z - 3x - 4y = 50
3. Tìm các số x, y, z, t biết rằng:
x: y: z : t = 15: 7 :3 :1 và x - y + z - t = 10
1, ta co \(\frac{x}{5}=\frac{y}{6}=\frac{x}{20}=\frac{y}{24}\)
\(\frac{y}{8}=\frac{z}{7}=\frac{y}{24}=\frac{z}{21}\)
=>\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)
=>\(x=3\cdot20=60\)
\(y=3\cdot24=72\)
\(z=3\cdot21=63\)
3. ta co \(\frac{x}{15}=\frac{y}{7}=\frac{z}{3}=\frac{t}{1}=\frac{x+y-z+t}{15-7+3-1}=\frac{10}{10}=1\)
=> \(x=1\cdot15=15\)
\(y=1\cdot7=7\)
\(z=1\cdot3=3\)
\(t=1\cdot1=1\)
Áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)
suy ra: x/5 = 45 => x = 225
y/7 = 45 => y = 315
z/9 = 45 => z = 405
Tìm x,y,z biết
\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x+3y-z=186
\(b.\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}\)
\(c.\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và 5x+y-2z=28
\(d.3x=2y;5x=5z,x-y+z=32\)
\(a.\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\) và \(2x+3y-z=186\)
Từ \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{3}\times\frac{1}{5}=\frac{y}{4}\times\frac{1}{5}=\frac{x}{15}=\frac{y}{20}\left(1\right)\)
Từ \(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{5}\times\frac{1}{4}=\frac{z}{7}\times\frac{1}{4}=\frac{y}{20}=\frac{z}{28}\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\)\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Đặt \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=k\)
\(\Rightarrow\hept{\begin{cases}x=15k\\y=20k\\z=28k\end{cases}}\)
Lại có : \(2x+3y-z=186\)
Thay vào ta có :
\(2.15k+3.20k-28k=186\)
\(30k+60k-28k=186\)
\(62k=186\)
\(k=3\)
Thay vào ta được :
\(\Rightarrow\hept{\begin{cases}x=15.3=45\\y=20.3=60\\z=28.3=84\end{cases}}\)
Vậy .....
1) Tìm x, biết:
a) x:2=y:5 và x+y=21
b) x2=y2𝑥2=𝑦2và x.y=54
c) x:7=y:5 và y-x=12
2) Tím các số x, y, z, biết:
a) x10=y6=z21𝑥10=𝑦6=𝑧21và 5x+y-2z=28
b) x3=y4𝑥3=𝑦4; y5=z7𝑦5=𝑧7và 2x+3y-z=124
c) 3x=2y; 7y=5z và x-y+z=32
d) 2x=3x=5z và x+y-z=95
Để giải các bài toán này:
1a) \( \frac{x}{2} = \frac{y}{5} \) và \( x + y = 21 \)
Từ phương trình thứ nhất, ta có \( x = \frac{2y}{5} \). Thay vào phương trình thứ hai:
\[ \frac{2y}{5} + y = 21 \]
\[ \frac{7y}{5} = 21 \]
\[ 7y = 105 \]
\[ y = 15 \]
Thay \( y = 15 \) vào \( x + y = 21 \):
\[ x + 15 = 21 \]
\[ x = 6 \]
Vậy, \( x = 6 \).
1b) \( \frac{x^2}{2^2} = \frac{y^2}{2^2} \) và \( x \cdot y = 54 \)
Từ phương trình thứ nhất:
\[ x^2 = y^2 \]
Đặt \( x = y \) ta có:
\[ x^2 = 54 \]
\[ x = \sqrt{54} \]
\[ x = 3\sqrt{6} \]
Vậy, \( x = 3\sqrt{6} \).
1c) \( \frac{x}{7} = \frac{y}{5} \) và \( y - x = 12 \)
Từ phương trình thứ nhất, ta có \( x = \frac{7y}{5} \). Thay vào phương trình thứ hai:
\[ y - \frac{7y}{5} = 12 \]
\[ \frac{5y}{5} - \frac{7y}{5} = 12 \]
\[ \frac{-2y}{5} = 12 \]
\[ -2y = 60 \]
\[ y = -30 \]
Thay \( y = -30 \) vào \( y - x = 12 \):
\[ -30 - x = 12 \]
\[ x = -42 \]
Vậy, \( x = -42 \).
2a) \( \frac{x}{10} = \frac{y}{6} = \frac{z}{21} \) và \( 5x + y - 2z = 28 \)
Đặt \( k = \frac{x}{10} = \frac{y}{6} = \frac{z}{21} \), ta có:
\[ x = 10k, \quad y = 6k, \quad z = 21k \]
Thay vào phương trình \( 5x + y - 2z = 28 \):
\[ 5(10k) + 6k - 2(21k) = 28 \]
\[ 50k + 6k - 42k = 28 \]
\[ 14k = 28 \]
\[ k = 2 \]
\[ x = 10(2) = 20, \quad y = 6(2) = 12, \quad z = 21(2) = 42 \]
Vậy, \( x = 20, y = 12, z = 42 \).
2b) \( \frac{x}{3} = \frac{y}{4} \), \( \frac{y}{5} = \frac{z}{7} \), và \( 2x + 3y - z = 124 \)
Đặt \( k = \frac{x}{3} = \frac{y}{4} \), ta có:
\[ x = 3k, \quad y = 4k \]
Thay vào \( \frac{y}{5} = \frac{z}{7} \):
\[ \frac{4k}{5} = \frac{z}{7} \]
\[ z = \frac{28}{5}k \]
Thay \( x, y, z \) vào \( 2x + 3y - z = 124 \):
\[ 2(3k) + 3(4k) - \frac{28}{5}k = 124 \]
\[ 6k + 12k - \frac{28}{5}k = 124 \]
\[ \frac{30k + 60k - 28k}{5} = 124 \]
\[ \frac{62k}{5} = 124 \]
\[ 62k = 620 \]
\[ k = 10 \]
\[ x = 3(10) = 30, \quad y = 4(10) = 40, \quad z = \frac{28}{5}(10) = 56 \]
Vậy, \( x = 30, y = 40, z = 56 \).
2c) \( 3x = 2y \), \( 7y = 5z \), và \( x - y + z = 32 \)
Từ \( 3x = 2y \) và \( 7y = 5z \):
\[ x = \frac{2}{3}y, \quad z = \frac{7}{5}y \]
Thay vào \( x - y + z = 32 \):
\[ \frac{2}{3}y - y + \frac{7}{5}y = 32 \]
\[ \frac{10y - 15y + 21y}{15} = 32 \]
\[ \frac{16y}{15} = 32 \]
\[ y = 30 \]
\[ x = \frac{2}{3}(30) = 20, \quad z = \frac{7}{5}(30) = 42 \]
Vậy, \( x = 20, y = 30, z = 42 \).
2d) \( 2x = 3x = 5z \) và \( x + y - z = 95 \)
Từ \( 2x = 3x = 5z \), ta có:
\[ x = \frac{2}{3}x, \quad x = \frac{5}{3}z \]
Vậy, \( x = \frac{5}{3}z \).
Thay vào \( x + y - z = 95 \):
\[ \frac{5}{3}z + y - z = 95 \]
\[ \frac{2}{3}z + y = 95 \]
\[ y = 95 - \frac{2}{3}z \]
Thay \( x \) và \( y \) vào \( 2x = 3x = 5z \):
\[ 2(\frac{5}{3}z) = 3(\frac{5}{3}z) = 5z \]
\[ \frac{10}{3}z = 5z \]
\[ \frac{10}{3} = 5 \]
\[ \text{False} \]
Không có giải pháp thỏ
tìm các số x,y,z biết rằng:
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và 5x+y-2z=28
b)3x=2y, 7y=5z-y+z =32
c)\(\frac{x}{3}=\frac{y}{4},\frac{y}{3}=\frac{z}{5},2x-3y+z=6\)
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) =>\(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy ...
BÙI THỊ YẾN NHI m ns ai là nhỏ hả... đến lớp xem t xử m thế nào
tìm x, y, z biết
\(\frac{x}{3}=\frac{6}{y}=\frac{z}{10}\)và x +z=7+y
Sửa lại đề nha :
\(\frac{x}{3}=\frac{y}{6}=\frac{z}{10}\)
mà x + z = 7 + y
=> x + z - y = 7
Áp dụng tính chất dãy tỉ số bằng ngau ta có :
\(\frac{x}{3}=\frac{y}{6}=\frac{z}{10}=\frac{x+z-y}{3+10-6}=\frac{7}{7}=1\)
\(\Rightarrow\frac{x}{3}=1\Rightarrow x=3.1=3\)
\(\frac{y}{6}=1\Rightarrow y= 6.1=6\)
\(\frac{z}{10}=1\Rightarrow z=10.1=10\)
Vậy x = 3 ; y =6 ; z = 10 .
áp dụng tính chất dãy tỉ số bằng nhau
ta có:\(\frac{x}{3}\)=\(\frac{6}{y}\)=\(\frac{z}{10}\)=\(\frac{x+z}{3+10}\)=\(\frac{7+y}{13}\) =\(\frac{6+7+y}{y+13}\) =\(\frac{y+13}{y+13}\)=1
=>x=3 ; y=6 ; z=10
ÁP DỤNG TÍNH CHÂT DÃY TỈ SỐ BẰNG NHAU:
\(\frac{X}{3}=\frac{6}{y}=\frac{z}{10}=\frac{x+6+z}{3+y+10}=\frac{6}{6}=1.\)( do x+z=7+y)
Tìm x, y ,z biết :\(\frac{x-y}{10}=\frac{y+z}{5};\frac{x+y}{7}=\frac{y-z}{-8}\) và x - 2y + z =75
Tìm x, y, z biết rằng:
a) \(\frac{2x+5}{5}=\frac{y+6}{4}\) và 5x - 3y = - 64
b) \(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}\) và x + y + z = 6
b) Giải:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1\)
\(\Rightarrow x=y=z\)
Mà \(x+y+z=6\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
\(\Rightarrow x=y=z=2\)
Vậy \(x=y=z=2\)
Tìm x,y,z biết
\(\frac{x}{30}=\frac{y}{10}=\frac{z}{6}\) và x+y+z=92
Bài 1
Tìm x , y, z biết :
a) \(\frac{x}{6}=\frac{y}{-5}=\frac{z}{4}\)và 2x + y - 3z = 35
b) \(\frac{x}{2}=\frac{y}{3},\frac{y}{4}=\frac{z}{5}\)và x + y - z = 10
c) \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và x - 2y + 3z = -10
d) 5.x = 3 .y= 2.z và x + y +z = 62
giúp mình giaiar bài này với
Tìm x,y,z biết :
a) \(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\)và 5 x + y - 2z = 28
b)\(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\)và 2x + 3y -z = 125
c)\(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)và x + y + z = 49
d) \(\frac{x}{2}=\frac{y}{3}\)và xy = 54
\(a,\frac{x}{10}=\frac{y}{6}=\frac{z}{21}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
\(\frac{x}{10}=2\Rightarrow x=10.2=20\)
\(\frac{y}{6}=2\Rightarrow y=2.6=12\)
\(\frac{z}{21}=2\Rightarrow z=21.2=42\)
\(d,\frac{x}{2}=\frac{y}{3}=k\)\(\Rightarrow x=2k;y=3k\)
\(\Rightarrow ab=2k.3k=6k^2=54\)
\(\Rightarrow k^2=9\Leftrightarrow k=3\)
\(\frac{x}{2}=3\Rightarrow x=6\)
\(\frac{y}{3}=3\Rightarrow y=9\)
a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x = 20; y = 12; z = 42
b) Ta có: \(\frac{x}{3}=\frac{y}{4}\) => \(\frac{x}{15}=\frac{y}{20}\)
\(\frac{y}{5}=\frac{z}{7}\) => \(\frac{y}{20}=\frac{z}{28}\)
=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)
Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{125}{62}=\frac{125}{62}\)
=> \(\hept{\begin{cases}\frac{x}{15}=\frac{125}{62}\\\frac{y}{20}=\frac{125}{62}\\\frac{z}{28}=\frac{125}{62}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{125}{62}.15=\frac{1875}{62}\\y=\frac{125}{62}.20=\frac{1250}{31}\\z=\frac{125}{62}.28=\frac{1750}{31}\end{cases}}\)
Vậy ...
b) \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{2x}{30}=\frac{3y}{60};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{3y}{60}=\frac{z}{28}\)
\(\Rightarrow\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)
Áp dụng dãy tỉ số bằng nhau:
đến đây dễ rồi bạn tự lm tiếp nhé
c) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\)
\(\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)
Áp dụng dãy tỉ số bằng nhau:
.............
d) Ta có:
\(xy=54\Rightarrow x=\frac{54}{y}\)
\(\frac{x}{2}=\frac{\frac{54}{y}}{2}=54.\frac{2}{y}=\frac{108}{y}\)
Ta lại có:\(\frac{x}{2}=\frac{y}{3}\Rightarrow\frac{108}{y}=\frac{y}{3}\Rightarrow y^2=324\Leftrightarrow y=18\)
thay vào \(\frac{x}{2}=\frac{y}{3}\Leftrightarrow\frac{x}{2}=\frac{18}{3}\Leftrightarrow x=12\)
Vậy.....