Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
NGÔ BẢO NGÂN
Xem chi tiết
QuocDat
11 tháng 2 2020 lúc 20:48

2x=3y=5z <=>\(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{x}{3}=\frac{y}{5}=\frac{z}{2}=\frac{x+y-z}{3+5-2}=\frac{95}{6}\)

Từ đó bạn có thế => x,y,z=

Khách vãng lai đã xóa
Yêu nè
11 tháng 2 2020 lúc 20:48

2x  = 3y = 5z 

\(\Rightarrow\frac{x}{15}=\frac{y}{10}=\frac{z}{6}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\frac{x}{15}=\frac{y}{10}=\frac{z}{6}=\frac{x+y-z}{15+10-6}=\frac{95}{19}=5\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{15}=5\\\frac{y}{10}=5\\\frac{z}{6}=5\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=15.5=75\\y=5.10=50\\z=6.5=30\end{cases}}\)

Vậy x = 75 ; y = 50 và z = 30

@@ Học tốt@@
## Chiyuki Fujito

Khách vãng lai đã xóa
NGÔ BẢO NGÂN
11 tháng 2 2020 lúc 20:51

CẢM ƠN Ạ ^-^

Khách vãng lai đã xóa
Edogawa Conan
Xem chi tiết
zZz Cool Kid_new zZz
26 tháng 10 2018 lúc 17:13

bạn giải đi bạn

♥➴Hận đời FA➴♥
27 tháng 10 2018 lúc 16:20

Theo đề ta có: \(x:y:z=3:4:5\Rightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)

Đặt: \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\inℕ^∗\right)\)

Suy ra: \(x=3k;y=4k;z=5k\) Thay vào biểu thức P ta có:

\(P=\frac{3k+8k+15k}{6k+12k+20k}+\frac{6k+12k+20k}{9k+16k+25k}+\frac{9k+16k+25k}{12k+20k+30k}\)

\(P=\frac{26k}{38k}+\frac{38k}{50k}+\frac{50k}{62k}=\frac{13}{19}+\frac{19}{25}+\frac{25}{31}=\frac{33141}{14725}\)

mạc trần
Xem chi tiết
Lê Huyền Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 2 2022 lúc 22:27

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)

Do đó: x-1=10; y-2=15; z-3=20

=>x=11; y=17; z=23

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

c: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{3}=\dfrac{y}{2}\\\dfrac{y}{5}=\dfrac{z}{7}\end{matrix}\right.\Leftrightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}\)

Trường hợp 1: 2x-3y+5z=-1

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{-1}{70}\)

Do đó: x=-15/70=-3/14; y=-10/70=-1/7; z=-14/70=-1/5

Trường hợp 2: 2x-3y+5z=1

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{14}=\dfrac{2x-3y+5z}{2\cdot15-3\cdot10+5\cdot14}=\dfrac{1}{70}\)

Do đó: x=15/70=3/14; y=1/7; z=1/5

mạc trần
Xem chi tiết
minh anh
Xem chi tiết
Shana
14 tháng 8 2016 lúc 22:01

Đặt \(\frac{x}{2}=\frac{y}{4}=\frac{z}{5}=k\)

\(\Rightarrow x=2k\)

\(y=4k\)

\(z=5k\)

\(\Rightarrow M=\frac{5x-2y+4z}{x+3y-5z}\)

\(=\frac{5\cdot2k-2\cdot4k+4\cdot5k}{2k+3\cdot4k-5\cdot5k}\)

\(=\frac{10k-8k+20k}{2k+12k-25k}\)

\(=\frac{2k\left(5-4+10\right)}{k\left(2+12-25\right)}\)

\(=\frac{2k\cdot11}{k\cdot\left(-11\right)}\)

\(=-2\)

phượng ớt ớt
Xem chi tiết
Phạm Ngân Hà
24 tháng 12 2017 lúc 20:15

Xét \(x+y=z+95\Rightarrow x+y-z=95\) (*)

Ta có:

\(2x=3y=5z\)

\(\Rightarrow\dfrac{2x}{30}=\dfrac{3y}{30}=\dfrac{5z}{30}\)

\(\Rightarrow\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}\)

Từ (*) và áp dụng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{x}{15}=\dfrac{y}{10}=\dfrac{z}{6}=\dfrac{x+y-z}{15+10-6}=\dfrac{95}{19}=5\)

Vậy \(\left\{{}\begin{matrix}x=5.15=75\\y=5.10=50\\z=5.6=30\end{matrix}\right.\)

TNT GAMING
Xem chi tiết
Trà My
13 tháng 4 2019 lúc 22:35

\(\hept{\begin{cases}x\left(x+3y+5z\right)=168\\y\left(x+3y+5z\right)=112\\z\left(x+3y+5z\right)=56\end{cases}}\Leftrightarrow\hept{\begin{cases}x\left(x+3y+5z\right)=168\\3y\left(x+3y+5z\right)=336\\5z\left(x+3y+5z\right)=280\end{cases}}\)

=>\(x\left(x+3y+5z\right)+3y\left(x+3y+5z\right)+5z\left(x+3y+5z\right)=168+336+280\)

<=>\(\left(x+3y+5z\right)^2=784\Leftrightarrow x+3y+5z=\pm28\)

Bạn xét từng trường hợp của x+3y+5z rồi sau đó thế vào giả thiết ban đầu để tìm x;y;z nhé

Lưu Ngọc Thái Sơn
Xem chi tiết