Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vương Tuấn Khải
Xem chi tiết
Kimian Hajan Ruventaren
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 4 2021 lúc 21:55

a.

ĐKXĐ: \(1\le x\le7\)

\(\Leftrightarrow x-1-2\sqrt{x-1}+2\sqrt{7-x}-\sqrt{\left(x-1\right)\left(7-x\right)}=0\)

\(\Leftrightarrow\sqrt{x-1}\left(\sqrt{x-1}-2\right)-\sqrt{7-x}\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-1}-\sqrt{7-x}\right)\left(\sqrt{x-1}-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-1}=\sqrt{7-x}\\\sqrt{x-1}=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=7-x\\x-1=4\end{matrix}\right.\)

\(\Leftrightarrow...\)

Nguyễn Việt Lâm
8 tháng 4 2021 lúc 22:01

b. ĐKXĐ: ...

Biến đổi pt đầu:

\(x\left(y-1\right)-\left(y-1\right)^2=\sqrt{y-1}-\sqrt{x}\)

Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y-1}=b\ge0\end{matrix}\right.\)

\(\Rightarrow a^2b^2-b^4=b-a\)

\(\Leftrightarrow b^2\left(a+b\right)\left(a-b\right)+a-b=0\)

\(\Leftrightarrow\left(a-b\right)\left(b^2\left(a+b\right)+1\right)=0\)

\(\Leftrightarrow a=b\)

\(\Leftrightarrow\sqrt{x}=\sqrt{y-1}\Rightarrow y=x+1\)

Thế vào pt dưới:

\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)

\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+7-x-3\sqrt{5-x}=0\)

\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)

\(\Leftrightarrow\left(x^2-5x+4\right)\left(\dfrac{3}{x+\sqrt{5x-4}}+\dfrac{1}{7-x+3\sqrt{5-x}}\right)=0\)

\(\Leftrightarrow...\)

Trần
Xem chi tiết
Nguyễn Phương HÀ
13 tháng 8 2016 lúc 22:50

Hỏi đáp Toán

Hoàng Lê Bảo Ngọc
13 tháng 8 2016 lúc 22:54

Điều kiện xác định : \(x\ge2\)

Ta có : \(\sqrt{x+8+2\sqrt{x+7}}+\sqrt{x+1-\sqrt{x+7}}=4\)

\(\Leftrightarrow\sqrt{\left(\sqrt{x+7}+1\right)^2}+\sqrt{\left(x+7\right)-\sqrt{x+7}-6}=4\)

\(\Leftrightarrow\sqrt{x+7}+\sqrt{\left(x+7\right)-\sqrt{x+7}-6}-3=0\)

Đặt \(t=\sqrt{x+7},t\ge0\) , pt trở thành \(t+\sqrt{t^2-t-6}-3=0\)

\(\Leftrightarrow\left(t-3\right)+\sqrt{\left(t-3\right)\left(t+2\right)}=0\)

\(\Leftrightarrow\sqrt{t-3}\left(\sqrt{t-3}+\sqrt{t+2}\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}\sqrt{t-3}=0\\\sqrt{t-3}+\sqrt{t+2}=0\end{array}\right.\)

Vì \(\sqrt{t-3}\ge0,\sqrt{t+2}\ge0\Rightarrow\sqrt{t-3}+\sqrt{t+2}\ge0\) . Dấu "=" không đồng thời xảy ra nên pt vô nghiệm.

Vậy t = 3 => x = 2

pt có nghiệm x = 2

ABC
Xem chi tiết
ABC
Xem chi tiết
hsshg
13 tháng 1 2020 lúc 9:59

thì v nè

Khách vãng lai đã xóa
Nguyễn Thiều Công Thành
Xem chi tiết
Incursion_03
9 tháng 9 2018 lúc 22:15

what hell ?
Bạn giải hộ ai à?

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

..

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.vi diệu !

사랑해 @nhunhope94
9 tháng 9 2018 lúc 22:19

hok cũng giỏi ghê 

~ tự biên tự diễn hả ~

Nguyen Quynh Huong
Xem chi tiết
Nguyen Quynh Huong
6 tháng 6 2018 lúc 20:08

@Akai Haruma , @phynit giải dùm em vs ạ

Hằng Nga
Xem chi tiết
Thanh Thanh Nguyệt
Xem chi tiết
Akai Haruma
28 tháng 5 2020 lúc 9:48

Lời giải:
ĐK: $x\geq -1$

Đặt $\sqrt[3]{9-\sqrt{x+1}}=a; \sqrt[3]{7+\sqrt{x+1}}=b$. Ta có hệ sau đây:

\(\left\{\begin{matrix} a+b=4\\ a^3+b^3=16\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=4\\ (a+b)^3-3ab(a+b)=16\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} a+b=4\\ 64-12ab=16\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} a+b=4\\ ab=4\end{matrix}\right.\)

Theo định lý Vi-et đảo, $a,b$ là nghiệm của PT:

$X^2-4X+4=0$

$\Rightarrow a=b=2$

$\Leftrightarrow \sqrt[3]{9-\sqrt{x+1}}=\sqrt[3]{7+\sqrt{x+1}}=2$

$\Rightarrow \sqrt{x+1}=1$

$\Rightarrow x=0$ (thỏa)

Vậy..........