Giải phương trình:
a) \(\sqrt{16-x}+\sqrt{x+9}=7\)
b) \(\sqrt{2-x^2}+\sqrt{x^2+8}=4\)
a, \(\sqrt{x+8+2\sqrt{x+7}}+\sqrt{x+1-\sqrt{x+7}}=4\)
b,\(\sqrt{5x^2+14x+9}=5\sqrt{x+1}+\sqrt{x^2-8x-20}\)
giai pt
a) \(\sqrt{1+\sqrt{1-x^2}.}[\sqrt{\left(1-x\right)^3}-\sqrt{\left(1+x\right)^3}]=2+\sqrt{1-x^2}\)
b) \(\sqrt{1-x}-2x\sqrt{1-x^2}-2x^2+1=0\)
c) \(64x^6-112x^4+56x^2-7=2\sqrt{1-x^2}\)
Số nghiệm PT \(\left(2-\sqrt{5}\right)x^4+5x^2+7\left(1+\sqrt{2}\right)=0\)
giải pt \(\sqrt[3]{x+6}+\sqrt{x-1}=x^2-1\)
Giải pt : \(\sqrt{x^2+91}=\sqrt{x-2}+x^2\)
giải pt :
\(\sqrt{\sqrt{3}-x}=x\sqrt{\sqrt{3}+x}\)
\(\left\{{}\begin{matrix}y^3-4y^2+4y=\sqrt{x+1}\left(y^2-5y+4+\sqrt{x+1}\right)\\2\sqrt{x^2-3x+3}+6x-7=y^2\left(x-1\right)^2+\left(y^2-1\right)\sqrt{3x-2}\end{matrix}\right.\)
Giải hệ pt
\(\sqrt{x-1}\)+2x\(^2\) +1 =\(\sqrt{y}\) + y\(^2\) + xy+ 3x
x\(^4\)+ 3x- 6\(\sqrt{x-2}\) + 60= 18(y2 +2y)