x2 -2
- = -
4 125x
Phân tích đa thức sau thành nhân tử:
a.(x+y)^2-2(x+y)+1
b.x^3+1-x^2-x
c.27x^3 - 0,001
d.125x^3 - 1
e.(x2 + 4)^2 - 16x2^
a) (x + y)2 - 2(x + y) + 1
= (x + y)2 - 2.1.(x + y) + 1
= (x + y - 1)2
b) x3 + 1 - x2 - x
= (x3 - x2) - (x - 1)
= x2(x - 1) - (x - 1)
= (x2 - 1)(x - 1) = (x - 1)(x + 1)(x - 1) = (x - 1)2(x + 1)
c) 27x3 - 0,001
= \(\left(3x\right)^3-\frac{1}{1000}=\left(3x\right)^3-\left(\frac{1}{10}\right)^3=\left(3x-\frac{1}{10}\right)\left(9x^2+\frac{3}{10}x+\frac{1}{100}\right)\)
d) 125x3 - 1 =(5x)3 - 1 = (5x - 1)(25x2 + 5x + 1)
e) (x2 + 4)2 - 16x2
= (x2 + 4)2 - (4x)2
= (x2 - 4x + 4)(x2 + 4x + 4)
= (x - 2)2(x + 2)2
= [(x - 2)(x + 2)]2
a.\(\left(x+y\right)^2-2\left(x+y\right)+1\)
\(=\left(x+y\right)^2-2.\left(x+y\right).1+1^2\)
\(=\left[\left(x+y\right)-1\right]^2\)
\(=\left(x+y-1\right)^2\)
b.\(x^3+1-x^2-x\)
\(=\left(x^3-x^2\right)+\left(1-x\right)\)
\(=x^2\left(x-1\right)-\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-1\right)\)
\(=\left(x-1\right)^2\left(x+1\right)\)
c.\(27x^3-0,001\)
\(=27x^3-\frac{1}{1000}\)
\(=\left(3x\right)^3-\left(\frac{1}{10}\right)^3\)
\(=\left(3x-\frac{1}{10}\right)\left(9x^2+0,3x+\frac{1}{100}\right)\)
d,\(125x^3-1\)
\(=\left(5x\right)^3-1^3\)
\(=\left(5x-1\right)\left(25x^2+5x+1\right)\)
e.\(\left(x^2+4\right)^2-16x^2\)
\(=\left(x^2+4\right)^2-\left(4x\right)^2\)
\(=\left(x^2+4-4x\right)\left(x^2+4+4x\right)\)
\(=\left(x^2-4x+4\right)\left(x^2+4x+4\right)\)
\(=\left(x-2\right)^2\left(x+2\right)^2\)
Tính (x^4 + 20x^3 + 125x^2 + 250x + 2108) / (x^2 + 10x + 29)
\(=\dfrac{x^4+10x^3+29x^2+10x^3+100x^2+290x-4x^2-40x-116+2224}{x^2+10x+29}\)
\(=x^2+10x-4+\dfrac{2224}{x^2+10x+29}\)
Phân tích đa thức thành nhân tử: A=5x³-125x B=x³-8+(2-x).(4-5x)
\(A=5x^3-125x=5x\left(x-5\right)\left(x+5\right)\)
\(B=x^3-8+\left(x-2\right)\left(5x+4\right)\)
\(=\left(x-2\right)\left(x^2+2x+4+5x+4\right)\)
\(=\left(x-2\right)\left(x+2\right)\left(x+4\right)\)
Chuyển thành hằng đẳng thức
125x3y4-25x6-y2=?
(x+4)2-25=?
b, ( x + 4) ^2 - 25 = ( x + 4)^2 - 5^2 = ( x + 4 - 5)( x + 4 + 5) = ( x - 1)( x+9)
giá trị nhỏ nhất của: \(y=\frac{125x+1}{4^2+\sqrt{x}}\)
phân tích đa thức sau thành nhân tử:
a)x^4-y^4
b)x^2-3y^2
c)(3x-2y)^2-4(x+y)^2
d)9(x-y)^2-4(x+y)^2
f)x^3+27
g)27x^3-0,001
h)125x^3-1
\(a,=\left(x^2-y^2\right)\left(x^2+y^2\right)=\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\\ b,=\left(x-\sqrt{3}y\right)\left(x+\sqrt{3}y\right)\\ c,=\left[3x-2y-2\left(x+y\right)\right]\left[3x-2y+2\left(x+y\right)\right]\\ =5x\left(x-4y\right)\\ d,=\left[3\left(x-y\right)-2\left(x+y\right)\right]\left[3\left(x-y\right)+2\left(x+y\right)\right]\\ =\left(3x-3y-2x-2y\right)\left(3x-3y+2x+2y\right)\\ =\left(x-5y\right)\left(5x-y\right)\\ f,=\left(x+3\right)\left(x^2-3x+9\right)\\ g,=\left(3x-0,1\right)\left(9x^2+0,3x+0,01\right)\\ h,=\left(5x-1\right)\left(25x^2+5x+1\right)\)
\(a)x^4-y^4=(x^2-y^2)(x^2+y^2)=(x-y)(x+y)(x^2+y^2)\\ b)x^2-3y^2=\\ c)(3x-2y)^2-4(x+y)^2=(3x-2y)^2-[2(x+y)]^2\\=(3x-2y+2x+2y)(3x-2y-2x-2y)=5x(x-4y)\\ d)9(x-y)^2-4(x+y)^2=[3(x-y)]^2-[2(x+y)]^2=(3x-3y+2x+2y)(3x-3y-2x-2y)\\=(5x-y)(x-5y)\\ f)x^3+27=(x+3)(x^2-3x+9)\\ g)27x^3-0,001=(3x-0,1)(9x+0,3x+0,01)\\ h)125x^3-1=(5x-1)(25x^2+5x+1)\)
a) x2-5x=0
b)x4=125x
c)3x+3x+2=90
a) \(x^2-5x=0\)
\(x\left(x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}}\)
b) \(x^4=125x\)
\(x^4-125x=0\)
\(x\left(x^3-125\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^3-125=0\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}}\)
c) \(3^x+3^{x+2}=90\)
\(3^x\left(1+3^2\right)=90\)
\(3^x\cdot10=90\)
\(3^x=9=3^2\)
\(\Rightarrow x=2\)
a) x2 - 5x = 0
x.(x-5) = 0
=> x = 0
x-5 = 0 => x = 5
KL:...
b) x4 = 125x
=> x3 = 125 = 53
=> x = 5
c) 3x + 3x+2 = 90
3x + 3x.9 = 90
3x.(1+9) = 90
3x.10 = 90
3x = 9 = 32
=> x = 2
\(x^2-5x=0\)
\(\Rightarrow x\left(x-5\right)=0\Rightarrow\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
\(x^4=125x\)
\(\Rightarrow x^4-125x=0\)
\(\Rightarrow x\left(x^3-125\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=0\\x^3=125\end{cases}\Rightarrow\orbr{\begin{cases}x=0\\x^3=5^3\end{cases}\Rightarrow}}\orbr{\begin{cases}x=0\\x=5\end{cases}}\)
\(3^x+3^{x+2}=90\)
\(\Rightarrow3^x+3^x.3^2=90\)
\(\Rightarrow3^x\left(3^2+1\right)=90\)
\(\Rightarrow3^x.10=90\)
\(\Rightarrow3^x=9\Rightarrow3^x=3^2\Rightarrow x=2\)
5X2=125X. Tìm X
(125x^3 -1) : (25x^2 +5x +1)
(125x3 - 1) : (25x2 + 5x + 1)
= (5x - 1)(25x2 + 5x + 1) : (25x2 + 5x + 1)
= 5x - 1