Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
doraemon
Xem chi tiết
doraemon
17 tháng 4 2022 lúc 10:17

Mình có nghĩ ra cách này mọi người xem giúp mình với

f(x) = \(ax^2+bx+c\) 

Ta có f(0) = 2 => c = 2

Ta đặt Q(x) = \(ax^2+bx+c-2020\)

và G(x) = \(ax^2+bx+c+2021\)

f(x) - 2020 chia cho x - 1 hay Q(x) chia cho x - 1 được số dư

\(R_1\) = Q(1) = \(a.1^2+b.1+c-2020=a+b+c-2020\)  

Mà Q(x) chia hết cho x-1 nên \(R_1\) = 0

hay \(a+b+c-2020=0\). Mà c = 2 => a + b = 2018 (1)

G(x) chia cho x + 1 số dư 

\(R_2\) = G(-1) = \(a.\left(-1\right)^2+b.\left(-1\right)+c+2021=a-b+2+2021\)

Mà G(x) chia hết cho x + 1 nên \(R_2\)=0

hay \(a-b+2+2021=0\) => \(a-b=-2023\) (2)

Từ (1) và (2) suy ra: \(\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)

Vậy \(\left\{{}\begin{matrix}a=-\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)

Đàm Nam Phong
17 tháng 4 2022 lúc 10:32

ko biết !!!

Nguyễn Việt Lâm
17 tháng 4 2022 lúc 16:50

\(f\left(0\right)=2\Rightarrow c=2\)

\(f\left(x\right)-2020\) chia hết \(x-1\Rightarrow f\left(1\right)-2020=0\)

\(\Rightarrow a+b+c-2020=0\Rightarrow a+b-2018=0\)

\(f\left(x\right)+2021\) chia hết \(x+1\Rightarrow f\left(-1\right)+2021=0\)

\(\Rightarrow a-b+c+2021=0\Rightarrow a-b+2023=0\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=2018\\a-b=-2023\end{matrix}\right.\)  \(\Rightarrow\left\{{}\begin{matrix}a=\dfrac{5}{2}\\b=\dfrac{4041}{2}\end{matrix}\right.\)

Nguyễn Mai Quỳnh Anh
Xem chi tiết
Nguyễn Trịnh Hồng Hương
17 tháng 2 2017 lúc 22:31

Ta có: f(0)=1

<=> ax+bx+c=1

<=> c=1

          f(1)=0

<=>ax+bx+c=0

<=> a+b+c=0

mà c=1

=>a+b=-1(1)

      f(-1)=10

<=> ax2 +bx +c=10

<=>a-b+c=10

mà c=1

=>a-b=9(2)

Lấy (1) trừ (2) ta được (a+b)-(a-b)=-1-9

                           <=> 2b=-10

                           <=> b=-5

                           =>a=4

Vậy a=4,b=-5,c=1

Nguyễn Trịnh Hồng Hương
17 tháng 2 2017 lúc 22:33

Nhớ k đúng cho mik

Lê Song Phương
Xem chi tiết
Nguyễn Ngọc An Hy
Xem chi tiết
Xem chi tiết
çá﹏๖ۣۜhⒺo╰‿╯²ᵏ⁹
20 tháng 5 2022 lúc 7:37

Ta có \(f\left(1\right)=g\left(2\right)\)

hay \(2.1^2+a.1+4=2^2-5.2-b\)

           \(2+a+4\)    \(=4-10-b\)

           \(6+a\)          \(=-6-b\)

          \(a+b\)           \(=-6-6\)

          \(a+b\)           \(=-12\)                    \(\left(1\right)\)

Lại có \(f\left(-1\right)=g\left(5\right)\)

hay \(2.\left(-1\right)^2+a.\left(-1\right)+4=5^2-5.5-b\) 

                 \(2-a+4\)          \(=25-25-b\)

                \(6-a\)                 \(=-b\)

              \(-a+b\)                \(=-6\)

                 \(b-a\)                \(=-6\)

                 \(b\)                      \(=-b+a\)                       \(\left(2\right)\)

Thay \(\left(2\right)\) vào \(\left(1\right)\) ta được:

   \(a+\left(-6+a\right)=-12\)

   \(a-6+a\)      \(=-12\)

      \(a+a\)         \(=-12+6\)

        \(2a\)            \(=-6\)

         \(a\)             \(=-6:2\)

         \(a\)             \(=-3\)

Mà \(a=-3\) 

⇒ \(b=-6+\left(-3\right)=-9\)

Vậy \(a=3\) và \(b=-9\)

 

 

 

 

 

                               

çá﹏๖ۣۜhⒺo╰‿╯²ᵏ⁹
20 tháng 5 2022 lúc 7:41

Cái Vậy \(a=3\) và \(b=-9\) bạn ghi là \(a=-3\) và \(b=-9\) nha mk quên ghi dấu " \(-\) "

Nguyễn Ngọc An Hy
Xem chi tiết
tth_new
8 tháng 3 2019 lúc 9:54

1.a) Theo đề bài,ta có: \(f\left(-1\right)=1\Rightarrow-a+b=1\)

và \(f\left(1\right)=-1\Rightarrow a+b=-1\)

Cộng theo vế suy ra: \(2b=0\Rightarrow b=0\)

Khi đó: \(f\left(-1\right)=1=-a\Rightarrow a=-1\)

Suy ra \(ax+b=-x+b\)

Vậy ...

tth_new
8 tháng 3 2019 lúc 9:54

1.b) Y chang câu a!

tth_new
8 tháng 3 2019 lúc 10:03

Tớ nêu hướng giải bài 3 thôi nhé:

Bài toán: Cho đa thức \(f\left(x\right)=a_nx^n+a_{n-1}x^{n-1}+...+a_1x+a_0\) 

Chứng minh tổng các hệ số của đa thức f(x) là giá trị của đa thức khi x = 1

                                  Lời giải:

Thật vậy,thay x = 1 vào:

\(f\left(1\right)=a_n+a_{n-1}+...+a_1+a_0\) (đúng bằng tổng các hệ số của đa thức)

Vậy tổng các hệ số của 1 đa thức chính là giá trị của đa thức đó khi x = 1 (đpcm)

Big City Boy
Xem chi tiết
Nguyễn Hoàng Minh
15 tháng 10 2021 lúc 19:57

\(f\left(x\right):\left(x-a\right)\) dư r1

\(\Leftrightarrow f\left(x\right)=\left(x-a\right)\cdot a\left(x\right)+r_1\\ \Leftrightarrow f\left(a\right)=r_1\)

Vì \(\left(x-a\right)\left(x-b\right)\) là đa thức bậc 2 nên có dư bậc 1

Gọi dư của \(f\left(x\right):\left(x-a\right)\left(x-b\right)\) là \(cx+d\)

\(\Leftrightarrow f\left(x\right)=\left(x-a\right)\left(x-b\right)\cdot c\left(x\right)+cx+d\\ \Leftrightarrow f\left(a\right)=ac+d=r_1\left(1\right)\\ f\left(x\right)=\left(x-a\right)\left(x-b\right)\cdot c\left(x\right)+cx+d\\ =\left(x-a\right)\left(x-b\right)\cdot c\left(x\right)+c\left(x-b\right)+bc+d\\ =\left(x-b\right)\left[\left(x-a\right)\cdot c\left(x\right)+c\right]+bc+d\)

Vì \(f\left(x\right):\left(x-b\right)\) dư r2 nên \(bc+d=r_2\left(2\right)\)

Từ \(\left(1\right)\left(2\right)\Leftrightarrow\left\{{}\begin{matrix}bc+d=r_2\\ac+d=r_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c\left(a-b\right)=r_1-r_2\\ac+d=r_1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}c=\dfrac{r_1-r_2}{a-b}\\d=r_1-\dfrac{a\left(r_1-r_2\right)}{a-b}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}c=\dfrac{r_1-r_2}{a-b}\\d=\dfrac{ar_2-br_1}{a-b}\end{matrix}\right.\)

Vậy đa thức dư là \(\dfrac{r_1-r_2}{a-b}x+\dfrac{ar_2-br_1}{a-b}\)

 

htfziang
Xem chi tiết
Kudo Shinichi
15 tháng 1 2022 lúc 19:54

Ta có:

\(f\left(x\right)=ax^3+bx^2+cx+d\\ f\left(x\right)=0x^3+0x^2+0x+0\)

\(\Rightarrow a=b=c=d\left(theo.pp.đa.thức.đồng.nhất\right)\\ Chúc.bạn.học.Toán.tốt.\)

 

ILoveMath
15 tháng 1 2022 lúc 19:56

Đề hình như sai 

Cho a=1, b=2, c=3, d=0, x=0 có đúng đâu nhỉ

Đinh Hoàng Nhất Quyên
Xem chi tiết