phan tich da thuc thanh nhan tu
a) xy-y2+2x-2y
b) x2+2xy+y2-9
Phân tich da thuc thanh nhan tu
\(^{^{ }^2}\)x2-2xy+y2-2x+2y
\(=\left(x-y\right)^2-2\left(x-y\right)=\left(x-y\right)\left(x-y-2\right)\)
Phan tich da thuc thanh nhan tu : x2 - 4x -y2+4
\(x^2-4x+4-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
\(x^2-4x-y^2+4=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\)
Phan tich da thuc thanh nhan tu : x2 - 4x -y2+4
\(x^2-4x+4-y^2\)
\(=\left(x-2\right)^2-y^2\)
\(=\left(x-2-y\right)\left(x-2+y\right)\)
\(=\left(x-2\right)^2-y^2=\left(x-y-2\right)\left(x+y-2\right)\)
3.7: Su dung cac hang dang thuc de phan tich cac da thuc sau thanh nhan tu:
a) -y2 + 1/9
b) x4 - 256
c) 9 (x - 3)2 - 4 (x + 1)2
d) 25x2 - 1/81 x2y2
a) \(-y^2+\dfrac{1}{9}\)
\(=-\left(y^2-\left(\dfrac{1}{3}\right)^2\right)\)
\(=-\left(y+\dfrac{1}{3}\right)\left(y-\dfrac{1}{3}\right)\)
b) \(4^4-256\)
\(=4^4-4^4\)
\(=0\)
c) \(9\left(x-3\right)^2-4\left(x+1\right)^2\)
\(=\left(3x-9\right)^2-\left(2x+2\right)^2\)
\(=\left(3x-9+2x+2\right)\left(3x-9-2x-2\right)\)
\(=\left(5x-7\right)\left(x-11\right)\)
\(a,=\left(\dfrac{1}{3}-y\right)\left(\dfrac{1}{3}+y\right)\\ b,=\left(x^2-16\right)\left(x^2+16\right)\\ =\left(x-4\right)\left(x+4\right)\left(x^2+16\right)\\ c,=\left[3\left(x-3\right)-2\left(x+1\right)\right]\left[3\left(x-3\right)+2\left(x+1\right)\right]\\ =\left(3x-9-2x-2\right)\left(3x-9+2x+2\right)\\ =\left(x-11\right)\left(5x-7\right)\\ d,=\left(5x-\dfrac{1}{9}xy\right)\left(5x+\dfrac{1}{9}xy\right)=x^2\left(5-\dfrac{1}{9}y\right)\left(5+\dfrac{1}{9}y\right)\)
phan tich da thuc thanh nhan tu
9-x^2+2xy-y^2
\(=3^2-\left(x-y\right)^2=\left[3-\left(x-y\right)\right]\left[3+\left(x-y\right)\right]=\left(3-x+y\right)\left(3+x-y\right)\)
\(9-x^2+2xy-y^2\)
\(=9-\left(x^2-2xy+y^2\right)\)
\(=3^2-\left(x-y\right)^2\)
\(=\left(3-x+y\right)\left(3-x-y\right)\)
phan tich da thuc thanh nhan tu x2+2xy+7x+7y+10
phan tich da thuc thanh nhan tu :xy(x-y)-xz(x+z)+yz(2x+z-y)
phan tich da thuc sau thanh nhan tu
2x^2-xy-y^2
Ta có
\(2x^2-xy-y^2=x^2-xy+x^2-y^2\) \(=x\left(x-y\right)+\left(x+y\right)\left(x-y\right)\)
\(=\left(x+x+y\right)\left(x-y\right)\)
\(=\left(2x+y\right)\left(x-y\right)\)
x^2 - 2xy + y^2 - z^2 phan tich da thuc thanh nhan tur
\(x^2-2xy+y^2-z^2\\=(x^2-2xy+y^2)-z^2\\=(x-y)^2-z^2\\=(x-y-z)(x-y+z)\)