Chứng minh rằng a3 - 3a2 +2a chia hết cho 6 với mọi số nguyên a
Chứng minh rằng với mọi số nguyên a thì a2 (a + 1) + 2a (a + 1) chia hết cho 6
\(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\) là 3 số nguyên liên tiếp nên chia hết cho 6
Chứng minh rằng :
1.(2n-3)2-9 chia hết cho 4 với mọi số nguyên n
2.a(2a-3)-2a(a+1) chia hết cho 5 với a là số nguyên
3.a4-2a3-a2+2a chia hết cho 24 với a là số nguyên
4.n3-n chia hết cho 6 với mọi số nguyên n
Cho phân thức B = − a 4 + a 3 + a − 1 a 4 + a 3 + 3 a 2 + 2 a + 2 .
a) Thu gọn B.
b) Chứng minh B luôn không âm với mọi giá trị của a.
Chứng minh rằng:
1) (2n – 3)^2 – 9 chia hết cho 4 với mọi số nguyên n
2) a^4 - 2a^3 – a^2 + 2a chia hết cho 24 với a là số nguyên
\(1,\left(2n-3\right)^2-9=\left(2n-3-3\right)\left(2n-3+3\right)=\left(2n-6\right)2n=4n\left(n-3\right)⋮4\)
\(2,=a^3\left(a-2\right)-a\left(a-2\right)=\left(a-2\right)\left(a^3-a\right)=\left(a-2\right)\left(a-1\right)a\left(a+1\right)\)
Vì đây là tích 4 số nguyên lt nên chia hết cho \(1\cdot2\cdot3\cdot4=24\)
a) Chứng minh rằng: a3- a chia hết cho 6 với mọi giá trị a thuộc Z
b)Cho a,b,c thuộc Z thỏa mãn: a+b+c= 450 mũ 2023. Chứng minh rằng: a2+b2+c2 chia hết cho 6
a: a^3-a=a(a^2-1)
=a(a-1)(a+1)
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>a^3-a chia hết cho 6
Chứng minh rằng với mọi số nguyên a thì \(a^2\left(a+1\right)+2a\left(a+1\right)\) chia hết cho 6.
\(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a^2+2a\right)\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)
Tích 3 số tự nhiên liên tiếp chia hết cho 3 và có ít nhất 1 số chẵn nên \(a\left(a+1\right)\left(a+2\right)⋮6\)
Vậy \(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\left(đpcm\right)\)
1) chứng minh rằng tích 3 số tự nhiên liên tiếp chia hết 6.
2) chứng minh rằng với mọi số tự nhiên a luôn có: a . (a + 1) . (2a + 1) chia hết 6
a/Gọi 3 số tn liên tiếp là a , a+1 , a+2
Ta có A=a.(a+1).(a+2)
Chứng minh A chia hết cho 2: Chỉ có hai trường hợp
+Nếu a=2k =>A chia hết cho 2
+Nếu a=2k+1 =>a+1=2k+1+1= 2(k+1) =>A chia hết cho 2
Chứng minh A chia hêt cho 3: Chỉ có ba trường hợp
+Nếu a=3k =>A chia hết cho 3
+Nếu a=3k+1 =>a+2=3k+1+2=3k+3=3(k+1) =>A chia hết cho 3
+Nếu a=3k+2 =>a+1=3k+2+1=3k+3=3(k+1) =>A chia hết cho 3
vì A chia hết cho cả 2 và 3
mà ƯCLN(2,3)=1
vậy A chia hết cho 6
bài b bạn làm tương tự
1./ Gọi tích của 3 số tự nhiên liên tiếp là: A = n*(n+1)(n-1)
Trong 3 số tự nhiên liên tiếp thì:
Có ít nhất 1 số chẵn: => A chia hết cho 2Có 1 số chia hết cho 3 => A chia hết cho 3.A chia hết cho cả 2 và 3 mà U(2;3) = 1 => A chia hết cho 2x3 = 6. đpcm
2./ Tương tự, gọi tích B = a*(a + 1)*(2a + 1)
a và a+1 là 2 số tự nhiên liên tiếp nên sẽ có 1 số chẵn => B chia hết cho 2.Nếu a hoặc a+1 chia hết cho 3 thì B chia hết cho 3.Bếu a và a+1 không chia hết cho 3 thì từ kết quả câu 1./ số tự nhiên tiếp theo: a+2 sẽ chia hết cho 3 hay 2a + 4 chia hết cho 3 hay 2a + 1 + 3 chia hết cho 3 => 2a + 1 chia hết cho 3 => B chia hết cho 3.Như vậy, bất kỳ số tự nhiên a nào thì B cũng chia hết cho cả 2 và 3 => b chia hết cho 6.
ờ ai có thể giải dễ hiểu hơn ko
chứ bạn này giải mình ko hiểu
giúp mình nha
Chứng minh rằng: \(a^3 - a\) chia hết cho 6 với mọi số nguyên a
\(a^3 - a = a(a^2-1) = a(a-1)(a+1) = (a-1)a(a+1)\)
Tích hai số tự nhiên liên tiếp luôn chia hết cho 2 :
\((a-1)a\) ⋮ 2 (1)
Tích ba số tự nhiên liên tiếp luôn chia hết cho 3 :
\((a-1)a(a+1)\) ⋮ 3(2)
Từ (1)(2) suy ra: điều phải chứng minh
chứng minh rằng với mọi số nguyên a
a^3 - a chia hết cho 6
a^3 - 7a chia hết cho 6
a^3 + 11a chia hết cho 6