giải phương trình \(x\sqrt{\frac{1}{x}}-2x\sqrt[3]{x}=20\)
Giải phương trình
\(x\sqrt{\frac{1}{x}}-2x\sqrt[3]{x}=20\)
Giải Phương trình sau : \(\sqrt{x}-x\left(x-\frac{1}{2}\right)=\frac{1}{2x^3}-\frac{1}{2x\sqrt{x}}\)
giải hệ phương trình sau :\(\hept{\begin{cases}\sqrt{4x-2y}-2\sqrt{x-2y}=-1\\\sqrt{x-2y}+7\left(2x-y\right)=37\end{cases}}\)
Giải phương trình
\(x^2+2x+\sqrt{x-1}=\frac{1000}{x}+\sqrt{19-x}+20\)
Điều kiện \(\begin{cases}x-1\ge0\\19-x\ge0\end{cases}\) \(\Leftrightarrow\) \(x\in\left[1;19\right]\)
Ta thấy ngay phương trình có nghiệm x=10
Nghiệm này thuộc \(\left[1;19\right]\)
Mặt khác, đặt \(f\left(x\right)=x^2+2x+\sqrt{x-1}\)
\(g\left(x\right)=\frac{1000}{x}+\sqrt{19-x}+20\)
Ta dễ dàng kiểm tra \(f\left(x\right)\) là hàm số đồng biến, \(g\left(x\right)\) là hàm số dị biến trên \(\left[1;19\right]\)
Vậy \(x=10\) là nghiệm duy nhất của phương trình
a) Giải phương trình: \(\frac{x^2}{2}+\frac{x}{2}+1=\sqrt{2x^3-x^2+x+1}\)
b) Giải hệ phương trình \(\hept{\begin{cases}2x+3+\sqrt{4-y}=4\\\sqrt{2y+3}+\sqrt{4-x}=4\end{cases}}\)
Giải phương trình :
\(x^2+2x+\sqrt{x-1}=\frac{1000}{x}+\sqrt{19-x}+20\)
Giải phương trình:
\(x^2+2x=\sqrt{2x^2+4x+8}+20\)
\(\left(x-3\right)+3\left(x-3\right)\sqrt{\frac{x+1}{x-1}=4}\)
\(x^2+2x-28+8-\sqrt{2x^2+4x+8}=0\)
\(x^2+2x-28+\frac{64-2x^2-4x-8}{8+\sqrt{2x^2+4x+8}}=0\)
\(x^2+2x-28+\frac{-2\left(x^2+2x-28\right)}{8+\sqrt{2x^2+4x+8}}=0\)
\(\left(x^2+2x-28\right)\left(1-\frac{2}{8+\sqrt{2x^2+4x+8}}\right)=0\)
mà \(1-\frac{2}{8+\sqrt{2x+4x+8}}\ne0\Rightarrow x^2+2x-28=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=-1-\sqrt{29}\\x=-1+\sqrt{29}\end{cases}}\)
Giải phương trình :
\(\sqrt{2x-\frac{3}{x}}+\sqrt{\frac{6}{x}-2x}=1+\frac{3}{2x}\)
đến câu hỏi tương tự hình như có hay sao á
chúc may mắn
em mới lớp 4 hông hieru âu chị ơi
Giải phương trình:
a) x\(\sqrt{\frac{1}{x}}\)-2x\(\sqrt[3]{x}\)=20
b) \(\sqrt{x^3+8}\)=2x2-6x+4
giải phương trình \(\sqrt{2x+\frac{2013x-1}{\sqrt{2-x^2}}}-\sqrt[3]{2014-\frac{2013x-1}{\sqrt{2-x^2}}}=\sqrt{x+2003}-\sqrt[3]{x+1}\)