Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Mỹ Hảo
Xem chi tiết
Nguyễn Thu Hương
Xem chi tiết
Uyển Nhi
21 tháng 6 2016 lúc 21:43

cái này dễ èo 

Hạnh Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 7 2021 lúc 11:48

Vẽ tia AG là tia đối của tia AC

Ta có: \(\widehat{FAB}=\widehat{ABC}\)(hai góc so le trong, AF//BC)

\(\widehat{GAF}=\widehat{ACB}\)(hai góc đồng vị, AF//BC)

mà \(\widehat{ABC}=\widehat{ACB}\)(hai góc ở đáy của ΔABC cân tại A)

nên \(\widehat{BAF}=\widehat{GAF}\)

hay Ax là tia phân giác của góc ngoài tại đỉnh A(đpcm)

Nguyễn Thị Mai Anh
Xem chi tiết
Lê Huy Bảo
11 tháng 6 2021 lúc 20:08

a. Vì Ay // BC => góc yAC = góc ACB (sole trong)

                        góc yAx = góc ABC (đòng vị) 

Mà góc ABC = góc ACB => góc yAC = góc yAx => Ay là phân giác góc CAx

b. Vì AD là phân giác góc trong BAC , Ay là phân giác góc ngoài CAx 

=> Ay vuông góc với AD ( tính chất phân giác trong và ngoài )

Mà Ay // BC => góc yAD = góc ADB ( sole trong) => AD vuông góc với BC

#HT#

Khách vãng lai đã xóa
Thành Công Lê
Xem chi tiết
Nguyễn Lê Phước Thịnh
24 tháng 11 2023 lúc 19:27

a: 

loading...

b:

BD//AC

=>\(\widehat{DBA}=\widehat{BAC}\)(hai góc so le trong)(1)

CB//AD

=>\(\widehat{CBA}=\widehat{DAB}\)(hai góc so le trong)(2)

AB là phân giác của góc CAD

=>\(\widehat{CAB}=\widehat{DAB}\left(3\right)\)

Từ (1),(2),(3) suy ra \(\widehat{DBA}=\widehat{CBA}\)

Xét ΔACB và ΔADB có

\(\widehat{DBA}=\widehat{CBA}\)

BA chung

\(\widehat{CAB}=\widehat{DAB}\)

Do đó: ΔACB=ΔADB

=>AC=AD và BC=BD

c: Xét ΔAHB vuông tại H và ΔAKB vuông tại K có

AB chung

\(\widehat{HAB}=\widehat{KAB}\)

Do đó: ΔAHB=ΔAKB

=>BH=BK

d: Xét tứ giác AHBK có

\(\widehat{AHB}+\widehat{AKB}+\widehat{KAH}+\widehat{KBH}=360^0\)

=>\(\widehat{KBH}+60^0+90^0+90^0=360^0\)

=>\(\widehat{KBH}=360^0-90^0-90^0-60^0=120^0\)

Vũ Phạm Gia Hân
Xem chi tiết
Lan Vy
Xem chi tiết
Miyano  Shiho
Xem chi tiết
Hue Nguyen
Xem chi tiết
Kuroba Kaito
2 tháng 1 2019 lúc 10:10

x y A B C M D E

Giải :a) Ta có BD // Ay (gt)

=> góc DBM = góc A (so le trong)

mà góc A = 900 => góc BDM = 900

Xét tam giác AMC và tam giác BMD

có góc A = góc DBM = 900 (cmt)

   MA = MB(gt)

  góc AMC = góc BMD ( đối đỉnh)

=> tam giác AMC = tam giác BMD (g.c.g)

b) Ta có : tam giác AMC = tam giác BMD (cm câu a)

=> MC = MD ( hai cạnh tương ứng)

Xét tam giác MEC và tam giác MED

có MC = MD (cmt)

   CME = DME (gt)

 ME : chung

=> tam giác MEC = tam giác MED (c.g.c)

=> góc CEM = góc DEM (hai góc tương ứng) 

Mà tia EM nằm giữa ED và EC

=> EM là tia p/giác của góc DEC (Đpcm)

c) Ta có : tam giác AMC = tam giác BMD (cm câu a)

=> BD = AC ( hai cạnh tương ứng)

Mà DE = BD + BE

hay AC + BE = DE 

=> BE = DE - AC (1)

Ta lại có tam giác MEC = tam giác MED (cm câu b)

=> EC = ED (hai cạnh tương ứng) (2)

Từ (1) và (2) suy ra BE = CE - AC (Đpcm)