Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lee Soo A
Xem chi tiết
Nàng tiên cá
Xem chi tiết
ST
21 tháng 10 2018 lúc 9:23

A B C D M N P Q

Xét t/g ABD có: AM=BM (gt), AQ=DQ (gt)

=>MQ là đường trung bình của tam giác ABD

=>MQ // BD và MQ = 1/2BD (1)

CM tương tự với t/g CBD ta có: NP // BD và NP = 1/2BD (2)

Từ (1) và (2) => MQ // NP và MQ = NP 

=> MNPQ là hình bình hành (3)

Xét t/g ABC ta có: AM=BM (gt), BN = CN (gt)

=> MN là đg trung bình của t/g ABC

=> MN // AC

Mà AC _|_ BD (gt)

=> MN _|_ BD

Mà NP // BD (cmt)

=> MN _|_ NP (4)

Từ (3) và (4) =>  MNPQ là hình chữ nhật

Trần Hạnh
Xem chi tiết
Nguyễn Lê Phước Thịnh
18 tháng 12 2022 lúc 22:18

a: Xét ΔABD có AM/AB=AQ/AD

nên MQ//BD và MQ=BD/2

Xét ΔCBD có CN/CB=CP/CD

nên NP//BD và NP=BD/2

=>MQ//PN và MQ=PN

=>MNPQ là hình bình hành

Xét ΔBAC có BM/BA=BN/BC

nên MN//AC và MN=AC/2

=>MN vuông góc với NP

=>MNPQ là hình chữ nhật

b: Để MNPQ là hình vuông thì MN=NP

=>AC=BD

Đỗ Thanh Huyền
Xem chi tiết
Nhók Bướq Bỉnh
10 tháng 12 2016 lúc 19:23

tgiác ABC có MN là đường trung bình => MN // AC và MN = AC/2
tgiác DAC có PQ là đường trung bình => PQ // AC và PQ = AC/2
vậy: MN // PQ và MN = PQ => MNPQ là hình bình hành

mặt khác xét tương tự cho hai tgiác ABD và CBD ta cũng có:
NP // BD và NP = BD/2
do giả thiết AC_|_BD => AC_|_NP mà MN // AC => MN_|_NP

tóm lại MNPQ là hình chữ nhật (hbh có một góc vuông)

b) MNPQ là hình vuông <=> MN = NP <=> AC/2 = BD/2 <=> AC = BD
vậy điều kiện là: tứ giác ABCD có hai đường chéo vuông góc và bằng nhau
c, Vỳ Mn là đườq trung bình của tam giác ABC nên MN= \(\frac{1}{2}\) AC= 3cm

QM là đường trung bình của tam giác ABD nên QM = \(\frac{1}{2}\) BD = 4cm

Mà MNPQ là hình chữ nhật nên diện tích ABCD = ( MN+PQ).2= (3.4):2 = 6cm

Huyền Anh
12 tháng 12 2016 lúc 13:29

giống bài của mìnhbatngo

Lê Thanh Ngọc
Xem chi tiết
Trần Đặng Kiều Giang
Xem chi tiết
๖²⁴ʱんuリ イú❄✎﹏
30 tháng 10 2019 lúc 15:52

cho tứ giác ABCD. Gọi M,N,P,Q lần lượt là tđ của AB,BC,CD,DA.

a) tứ giác MNPQ là hình gì ? vì sao?

MN//BD; PQ//BD

NP//AC; QM//AC

=>MN//PQNP//QNMNPQ la hbbh

Khách vãng lai đã xóa
Longkendy
Xem chi tiết
Nguyen thi  kim oanh
30 tháng 11 2017 lúc 20:35

Mk ko biết làm bài này khó quá trời 

a) tgiác ABC có MN là đường trung bình => MN // AC và MN = AC/2 
tgiác DAC có PQ là đường trung bình => PQ // AC và PQ = AC/2 
vậy: MN // PQ và MN = PQ => MNPQ là hình bình hành 

mặt khác xét tương tự cho hai tgiác ABD và CBD ta cũng có: 
NP // BD và NP = BD/2 
do giả thiết AC_|_BD => AC_|_NP mà MN // AC => MN_|_NP 

tóm lại MNPQ là hình chữ nhật (hbh có một góc vuông) 

b) MNPQ là hình vuông <=> MN = NP <=> AC/2 = BD/2 <=> AC = BD 
vậy điều kiện là: tứ giác ABCD có hai đường chéo vuông góc và bằng nhau 

Đinh thị trà ly
Xem chi tiết
HONG TUYET
Xem chi tiết
Nguyễn Lê Phước Thịnh
25 tháng 10 2021 lúc 23:14

a: Xét ΔABD có

M là trung điểm của AB

Q là trung điểm của AD

Do đó: MQ là đường trung bình của ΔABD

Suy ra: MQ//BD và \(MQ=\dfrac{BD}{2}\left(1\right)\)

Xét ΔBCD có 

N là trung điểm của BC

P là trung điểm của CD

Do đó: NP là đường trung bình của ΔBCD

Suy ra: NP//BD và \(NP=\dfrac{BD}{2}\left(2\right)\)

Từ (1) và (2) suy ra MQ//NP và MQ=NP

Xét ΔABC có 

M là trung điểm của AB

N là trung điểm của BC

Do đó: MN là đường trung bình của ΔABC

Suy ra: MN//AC

mà AC\(\perp\)BD

nên MN\(\perp\)BD

hay MN\(\perp\)MQ

Xét tứ giác MQPN có

MQ//NP

MQ=NP

Do đó: MQPN là hình bình hành

mà \(\widehat{QMN}=90^0\)

nên MQPN là hình chữ nhật