Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thành Nam
Xem chi tiết
Quách Trung Kiên
Xem chi tiết
_Guiltykamikk_
5 tháng 4 2018 lúc 15:24

\(\left(\frac{1}{x}-\frac{2}{3}\right)^2-\frac{1}{16}=0\)

\(\left(\frac{1}{x}-\frac{2}{3}\right)^2=\frac{1}{16}\)

Ta có 2 trường hợp :

TH1 : \(\frac{1}{x}-\frac{2}{3}=\frac{1}{4}\)

\(\Leftrightarrow\frac{1}{x}=\frac{11}{12}\)

\(\Leftrightarrow x=\frac{12}{11}\)

TH2 : \(\frac{1}{x}-\frac{2}{3}=-\frac{1}{4}\)

\(\Leftrightarrow\frac{1}{x}=\frac{5}{12}\)

\(\Leftrightarrow x=\frac{12}{5}\)

Bùi Thế Hào
5 tháng 4 2018 lúc 15:26

\(\left(\frac{1}{x}-\frac{2}{3}\right)^2-\frac{1}{16}=0\) <=> \(\left(\frac{1}{x}-\frac{2}{3}\right)^2=\left(\frac{1}{4}\right)^2\)

=> \(|\frac{1}{x}-\frac{2}{3}|=\frac{1}{4}\)=> \(\frac{1}{x}-\frac{2}{3}=\pm\frac{1}{4}\)

+/ TH1: \(\frac{1}{x}=\frac{2}{3}+\frac{1}{4}=\frac{11}{12}=>x=\frac{12}{11}\)

+/ TH2: \(\frac{1}{x}=\frac{2}{3}-\frac{1}{4}=\frac{5}{12}=>x=\frac{12}{5}\)

Bảo Bình
Xem chi tiết
Bảo Bình
13 tháng 12 2020 lúc 11:49

Làm ơn giúp mik với đi ạ

Nguyễn Việt Lâm
13 tháng 12 2020 lúc 17:05

Phương trình hoành độ giao điểm:

\(x^2-2\left(m+1\right)x+m^2+2=0\)

\(\Delta'=\left(m+1\right)^2-\left(m^2+2\right)=2m-1\ge0\Rightarrow m\ge\dfrac{1}{2}\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+2\end{matrix}\right.\)

\(A=\sqrt{2\left(x_1+x_2\right)^2-4x_1x_2+16}-3x_1x_2\)

\(A=\sqrt{8\left(m+1\right)^2-4\left(m^2+2\right)+16}-3\left(m^2+2\right)\)

\(A=\sqrt{4m^2+16m+16}-3\left(m^2+2\right)\)

\(A=2m+4-3\left(m^2+2\right)\)

\(A=-3m^2+2m-2=-3m^2+2m-\dfrac{1}{4}-\dfrac{7}{4}\)

\(A=\left(\dfrac{1}{2}-m\right)\left(3m+\dfrac{1}{2}\right)-\dfrac{7}{4}\le-\dfrac{7}{4}\)

\(A_{max}=-\dfrac{7}{4}\) khi \(m=\dfrac{1}{2}\)

Xem chi tiết
Nham Nguyen
Xem chi tiết
gãi hộ cái đít
20 tháng 2 2021 lúc 16:31

Ta có: \(\left|x+3\right|+\left|x-1\right|=\left|x+3\right|+\left|1-x\right|\ge\left|x+3+1-x\right|=4\)

\(\left|y-2\right|+\left|y+2\right|=\left|2-y\right|+\left|y+2\right|\ge\left|2-y+y+2\right|=4\)

\(\Rightarrow\dfrac{16}{\left|y-2\right|+\left|y+2\right|}\le\dfrac{16}{4}=4\Rightarrow\left|x+3\right|+\left|x-1\right|\ge\dfrac{6}{\left|y-2\right|+\left|y+2\right|}\)

Dấu '=' xảy ra <=> (x+3)(1-x)\(\ge0\) và (2-y)(y+2)\(\ge0\)

Vì x,y \(\in Z\Rightarrow\left\{{}\begin{matrix}x\in\left\{-3;-2;-2;0;1\right\}\\y\in\left\{-2;-1;0;1;2\right\}\end{matrix}\right.\)

Vũ Ngọc Diệp
Xem chi tiết
Vũ Ngọc Diệp
27 tháng 8 2023 lúc 20:36

làm ơn giúp 🙏🙏🙏

Nguyễn Lê Phước Thịnh
28 tháng 8 2023 lúc 5:16

a: =>1/3x+2/5x-2/5=0

=>11/15x-2/5=0

=>11/15x=2/5

=>x=2/5:11/15=2/5*15/11=30/55=6/11

b: =>-5x-1-1/2x+1/3=x

=>-11/2x-2/3-x=0

=>-13/2x=2/3

=>x=-2/3:13/2=-2/3*2/13=-4/39

c: (x+1/2)(2/3-2x)=0

=>x+1/2=0 hoặc 2/3-2x=0

=>x=1/3 hoặc x=-1/2

d: 9(3x+1)^2=16

=>(3x+1)^2=16/9

=>3x+1=4/3 hoặc 3x+1=-4/3

=>3x=1/3 hoặc 3x=-7/3

=>x=1/9 hoặc x=-7/9

Kinder
Xem chi tiết
Xấu Không Cần Hư Cấu
Xem chi tiết
Trịnh Hữu An
18 tháng 7 2017 lúc 21:09

Câu 3 kiểm tra lại đề lại với , nếu đúng thì phức tạp lắm, còn sửa lại đề thì là :

\(y^2+2y+4^x-2^{x+1}+2=0\)

\(=>\left(y^2+2y+1\right)+2^{2x}-2^x.2+1=0\)

\(=>\left(y+1\right)^2+\left(\left(2^x\right)^2-2^x.2.1+1^2\right)=0\)

\(=>\left(y+1\right)^2+\left(2^x-1\right)^2=0\)

Dấu = xảy ra khi :

\(\hept{\begin{cases}y+1=0\\2^x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=-1\\x=0\end{cases}}}\)

CHÚC BẠN HỌC TỐT........... 

duygatay
18 tháng 7 2017 lúc 15:37

mk chịu

Trịnh Hữu An
18 tháng 7 2017 lúc 20:58

1, Khai triển ra ta được:

\(r\left(x\right)=-\left(9x^2-42x+49\right)+6x-14-17\)

\(=-9x^2+42x-49+6x-14-17\)

\(=-9x^2+48x-80\)

\(=-9x^2+48x-64-16\)

\(=-\left(\left(3x\right)^2-3x.2.8+8^2\right)-16\)

\(=-\left(3x+8\right)^2-16\)

\(Do-\left(3x+8\right)^2\le0\)

\(=>-\left(3x+8\right)^2-16\le-16\)

Dấu bằng xảy ra khi \(3x+8=0=>x=-\frac{8}{3}\)

Vậy giá trị nhỏ nhất là -16 tại \(x=-\frac{8}{3}\)

Hoàng
Xem chi tiết
Ngô Thành Chung
12 tháng 3 2021 lúc 10:24

Bài 1 \(\left\{{}\begin{matrix}x^2-3x-4\le0\\\left(m-1\right)x\ge2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le4\\\left(m-1\right)x\ge2\end{matrix}\right.\)

Nếu m = 1, hệ vô nghiệm

Nếu m ≠ 1, hệ tương đương

\(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\x\le\dfrac{2}{m-1}\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\x\ge\dfrac{2}{m-1}\end{matrix}\right.\end{matrix}\right.\)

Hệ có nghiệm khi một trong hai hệ trong hệ ngoặc vuông có nghiệm ⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\\dfrac{2}{m-1}\ge-1\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\\dfrac{2}{m-1}\le4\end{matrix}\right.\end{matrix}\right.\)

⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\-2\le1-m\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\2\le4m-4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1\le m< 1\\\dfrac{3}{2}\le m\le4\end{matrix}\right.\)