1.
Tìm x sao cho : \(^{\left(x^2-3\right)^2}=16\)
Tìm x sao cho: \(\left(x-2\right)^3+\left(2x+1\right)^3-9\left(x+1\right)^3=-16\)
Tìm x sao cho \(\left(\frac{1}{x}-\frac{2}{3}\right)^2-\frac{1}{16}=0\)
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2-\frac{1}{16}=0\)
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2=\frac{1}{16}\)
Ta có 2 trường hợp :
TH1 : \(\frac{1}{x}-\frac{2}{3}=\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{x}=\frac{11}{12}\)
\(\Leftrightarrow x=\frac{12}{11}\)
TH2 : \(\frac{1}{x}-\frac{2}{3}=-\frac{1}{4}\)
\(\Leftrightarrow\frac{1}{x}=\frac{5}{12}\)
\(\Leftrightarrow x=\frac{12}{5}\)
\(\left(\frac{1}{x}-\frac{2}{3}\right)^2-\frac{1}{16}=0\) <=> \(\left(\frac{1}{x}-\frac{2}{3}\right)^2=\left(\frac{1}{4}\right)^2\)
=> \(|\frac{1}{x}-\frac{2}{3}|=\frac{1}{4}\)=> \(\frac{1}{x}-\frac{2}{3}=\pm\frac{1}{4}\)
+/ TH1: \(\frac{1}{x}=\frac{2}{3}+\frac{1}{4}=\frac{11}{12}=>x=\frac{12}{11}\)
+/ TH2: \(\frac{1}{x}=\frac{2}{3}-\frac{1}{4}=\frac{5}{12}=>x=\frac{12}{5}\)
Cho (P): y= \(x^2-2\left(m+1\right)x+m^2+2\) Tìm m để (P) cắt trục hoành sao cho:
A=\(\sqrt{2\left(x_1^2+x^2_2\right)+16}-3x_1x_2\) đạt GTLN
Phương trình hoành độ giao điểm:
\(x^2-2\left(m+1\right)x+m^2+2=0\)
\(\Delta'=\left(m+1\right)^2-\left(m^2+2\right)=2m-1\ge0\Rightarrow m\ge\dfrac{1}{2}\)
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+2\end{matrix}\right.\)
\(A=\sqrt{2\left(x_1+x_2\right)^2-4x_1x_2+16}-3x_1x_2\)
\(A=\sqrt{8\left(m+1\right)^2-4\left(m^2+2\right)+16}-3\left(m^2+2\right)\)
\(A=\sqrt{4m^2+16m+16}-3\left(m^2+2\right)\)
\(A=2m+4-3\left(m^2+2\right)\)
\(A=-3m^2+2m-2=-3m^2+2m-\dfrac{1}{4}-\dfrac{7}{4}\)
\(A=\left(\dfrac{1}{2}-m\right)\left(3m+\dfrac{1}{2}\right)-\dfrac{7}{4}\le-\dfrac{7}{4}\)
\(A_{max}=-\dfrac{7}{4}\) khi \(m=\dfrac{1}{2}\)
Bài 1 Tìm x
\(\left(x-5\right)\left(x+5\right)-\left(x+3\right)^2+3\left(x-2\right)^2=\left(x+1\right)^2-\left(x^2-16\right)+3x^2\)
Tìm x, y biết :
\(\left|x+3\right|+\left|x-1\right|=\dfrac{16}{\left|y-2\right|+\left|y+2\right|}\)
Ta có: \(\left|x+3\right|+\left|x-1\right|=\left|x+3\right|+\left|1-x\right|\ge\left|x+3+1-x\right|=4\)
\(\left|y-2\right|+\left|y+2\right|=\left|2-y\right|+\left|y+2\right|\ge\left|2-y+y+2\right|=4\)
\(\Rightarrow\dfrac{16}{\left|y-2\right|+\left|y+2\right|}\le\dfrac{16}{4}=4\Rightarrow\left|x+3\right|+\left|x-1\right|\ge\dfrac{6}{\left|y-2\right|+\left|y+2\right|}\)
Dấu '=' xảy ra <=> (x+3)(1-x)\(\ge0\) và (2-y)(y+2)\(\ge0\)
Vì x,y \(\in Z\Rightarrow\left\{{}\begin{matrix}x\in\left\{-3;-2;-2;0;1\right\}\\y\in\left\{-2;-1;0;1;2\right\}\end{matrix}\right.\)
Tìm x:
a) \(\dfrac{1}{3}.x+\dfrac{2}{5}\left(x-1\right)=0\)
b)\(-5.\left(x+\dfrac{1}{5}\right)-\dfrac{1}{2}.\left(x-\dfrac{2}{3}\right)=x\)
c)\(\left(x+\dfrac{1}{2}\right).\left(\dfrac{2}{3}-2x\right)=0\)
d)\(9.\left(3x+1\right)^2=16\)
a: =>1/3x+2/5x-2/5=0
=>11/15x-2/5=0
=>11/15x=2/5
=>x=2/5:11/15=2/5*15/11=30/55=6/11
b: =>-5x-1-1/2x+1/3=x
=>-11/2x-2/3-x=0
=>-13/2x=2/3
=>x=-2/3:13/2=-2/3*2/13=-4/39
c: (x+1/2)(2/3-2x)=0
=>x+1/2=0 hoặc 2/3-2x=0
=>x=1/3 hoặc x=-1/2
d: 9(3x+1)^2=16
=>(3x+1)^2=16/9
=>3x+1=4/3 hoặc 3x+1=-4/3
=>3x=1/3 hoặc 3x=-7/3
=>x=1/9 hoặc x=-7/9
Tìm điều kiện của tham số m để hệ sau đây có nghiệm
\(\left\{{}\begin{matrix}x+\sqrt{x^2+16}\le\dfrac{40}{\sqrt{x^2+16}}\\x\left(x-2\right)\left(\sqrt{x^2+y^2+3}-1\right)+\left(x^3+x+m-2\right)^2=0\end{matrix}\right.\)
1.Cho \(r\left(x\right)=-\left(3x-7\right)^2+2\left(3x-7\right)-17\)
Tìm GTLN của biểu thức r(x).
2. So sánh : \(A=\left(3+1\right)\left(3^2+1\right)\left(3^4+1\right)\left(3^8+1\right)\left(3^{16}+1\right)\)với \(B=3^{32}-1\)
3. Tìm x, y biết: \(y^2+2y+4x-2^{x+1}+2=0\)
Câu 3 kiểm tra lại đề lại với , nếu đúng thì phức tạp lắm, còn sửa lại đề thì là :
\(y^2+2y+4^x-2^{x+1}+2=0\)
\(=>\left(y^2+2y+1\right)+2^{2x}-2^x.2+1=0\)
\(=>\left(y+1\right)^2+\left(\left(2^x\right)^2-2^x.2.1+1^2\right)=0\)
\(=>\left(y+1\right)^2+\left(2^x-1\right)^2=0\)
Dấu = xảy ra khi :
\(\hept{\begin{cases}y+1=0\\2^x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=-1\\x=0\end{cases}}}\)
CHÚC BẠN HỌC TỐT...........
1, Khai triển ra ta được:
\(r\left(x\right)=-\left(9x^2-42x+49\right)+6x-14-17\)
\(=-9x^2+42x-49+6x-14-17\)
\(=-9x^2+48x-80\)
\(=-9x^2+48x-64-16\)
\(=-\left(\left(3x\right)^2-3x.2.8+8^2\right)-16\)
\(=-\left(3x+8\right)^2-16\)
\(Do-\left(3x+8\right)^2\le0\)
\(=>-\left(3x+8\right)^2-16\le-16\)
Dấu bằng xảy ra khi \(3x+8=0=>x=-\frac{8}{3}\)
Vậy giá trị nhỏ nhất là -16 tại \(x=-\frac{8}{3}\)
Bài 1: Tìm m sao cho hệ bất phương trình \(\left\{{}\begin{matrix}x^2-3x-4\le0\\\left(m-1\right)x-2\ge0\end{matrix}\right.\)có nghiệm.
Bài 2: Tìm tất cả giá trị thực của tham số m để hệ bất phương trình \(\left\{{}\begin{matrix}x^2+10x+16\le0\\mx\ge3x+1\end{matrix}\right.\)vô nghiệm.
Bài 1 \(\left\{{}\begin{matrix}x^2-3x-4\le0\\\left(m-1\right)x\ge2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le x\le4\\\left(m-1\right)x\ge2\end{matrix}\right.\)
Nếu m = 1, hệ vô nghiệm
Nếu m ≠ 1, hệ tương đương
\(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\x\le\dfrac{2}{m-1}\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\x\ge\dfrac{2}{m-1}\end{matrix}\right.\end{matrix}\right.\)
Hệ có nghiệm khi một trong hai hệ trong hệ ngoặc vuông có nghiệm ⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\\dfrac{2}{m-1}\ge-1\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\\dfrac{2}{m-1}\le4\end{matrix}\right.\end{matrix}\right.\)
⇔ \(\left[{}\begin{matrix}\left\{{}\begin{matrix}-1\le m< 1\\-2\le1-m\end{matrix}\right.\\\left\{{}\begin{matrix}1< m\le4\\2\le4m-4\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}-1\le m< 1\\\dfrac{3}{2}\le m\le4\end{matrix}\right.\)