Những câu hỏi liên quan
phan tuấn anh
Xem chi tiết
Thắng Nguyễn
1 tháng 4 2017 lúc 21:30

Bài 1:

\(BDT\Leftrightarrow\sqrt{\frac{3}{a+2b}}+\sqrt{\frac{3}{b+2c}}+\sqrt{\frac{3}{c+2a}}\le\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\)

\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

Áp dụng BĐT Cauchy-Schwarz và BĐT AM-GM ta có: 

\(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{b}}\ge\frac{9}{\sqrt{a}+\sqrt{2}\cdot\sqrt{2b}}\ge\frac{9}{\sqrt{\left(1+2\right)\left(a+2b\right)}}=\frac{3\sqrt{3}}{\sqrt{a+2b}}\)

Tương tự cho 2 BĐT còn lại ta cũng có: 

\(\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{c}}\ge\frac{3\sqrt{3}}{\sqrt{b+2c}};\frac{1}{\sqrt{c}}+\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{a}}\ge\frac{3\sqrt{3}}{\sqrt{c+2a}}\)

Cộng theo vế 3 BĐT trên ta có: 

\(3\left(\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\right)\ge3\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

\(\Leftrightarrow\frac{1}{\sqrt{a}}+\frac{1}{\sqrt{b}}+\frac{1}{\sqrt{c}}\ge\sqrt{3}\left(\frac{1}{\sqrt{a+2b}}+\frac{1}{\sqrt{b+2c}}+\frac{1}{\sqrt{c+2a}}\right)\)

Đẳng thức xảy ra khi \(a=b=c\)

Bài 2: làm mãi ko ra hình như đề sai, thử a=1/2;b=4;c=1/2

alibaba nguyễn
1 tháng 4 2017 lúc 22:59

Bài 2/

\(\frac{bc}{a^2b+a^2c}+\frac{ca}{b^2c+b^2a}+\frac{ab}{c^2a+c^2b}\)

\(=\frac{b^2c^2}{a^2b^2c+a^2c^2b}+\frac{c^2a^2}{b^2c^2a+b^2a^2c}+\frac{a^2b^2}{c^2a^2b+c^2b^2a}\)

\(=\frac{b^2c^2}{ab+ac}+\frac{c^2a^2}{bc+ba}+\frac{a^2b^2}{ca+cb}\)

\(\ge\frac{\left(bc+ca+ab\right)^2}{2\left(ab+bc+ca\right)}=\frac{ab+bc+ca}{2}\)

\(\ge\frac{3\sqrt[3]{ab.bc.ca}}{2}=\frac{3}{2}\)

Dấu =  xảy ra khi \(a=b=c=1\)

tran thu ha
1 tháng 5 2017 lúc 22:55

bạn alibaba dòng thứ nhất rồi sao ra được dòng thứ hai á bạn mình k hiểu

Phùng Gia Bảo
Xem chi tiết
Darlingg🥝
15 tháng 1 2020 lúc 12:50

Áp dụng BĐT Bunhiacopxky ta có:

\(\left(a^2+2c^2\right)\left(1+2\right)\ge\left(a+2c^2\right)\)

\(\Rightarrow\sqrt{a^2+2c^2}\ge\frac{a+2c}{3}\)

\(\Rightarrow\frac{\sqrt{a^2+2c^2}}{ac}\ge\frac{a+2c}{\sqrt{3ac}}=\frac{ab+2bc}{\sqrt{3abc}}\)

\(\Rightarrow\hept{\begin{cases}\frac{\sqrt{c^2+2b^2}}{bc}\ge\frac{ac+2ab}{\sqrt{3abc}}\\\frac{\sqrt{b^2+2a^2}}{ab}\ge\frac{bc+2ac}{\sqrt{abc}}\end{cases}}\)

Ta được BĐT:

\(VT\ge\frac{1}{3}.\frac{ab+2abc+ac+2ab+bc+2ac}{abc}=\frac{1}{3}.\frac{3\left(ab+bc+ac\right)}{abc}\)

\(=\frac{1}{\sqrt{3}}.\frac{3abc}{abc}=3\)

=> đpcm

P/S: Làm tắt vs đoạn này k^o chắc mấy :V

Khách vãng lai đã xóa
Nyatmax
15 tháng 1 2020 lúc 13:48

Repair đề \(\Sigma_{cyc}\frac{\sqrt{2a^2+b^2}}{ab}\ge3\sqrt{3}\).Because dấu '=' xảy ra khi \(a=b=c=3\)

Không use condition của đề bài :))

Ta co:

\(VT=\sqrt{\frac{a}{b}+\frac{a}{b}+\frac{b}{a}}+\sqrt{\frac{b}{c}+\frac{b}{c}+\frac{c}{b}}+\sqrt{\frac{c}{a}+\frac{c}{a}+\frac{a}{c}}\)

\(\Rightarrow VT\ge\sqrt{3\sqrt[3]{\frac{a}{b}}}+\sqrt{3\sqrt[3]{\frac{b}{c}}}+\sqrt{3\sqrt[3]{\frac{c}{a}}}\ge3\sqrt[3]{\sqrt{3\sqrt[3]{\frac{a}{b}}.\sqrt{3\sqrt[3]{\frac{b}{c}}.\sqrt{3\sqrt[3]{\frac{c}{a}}}}}}=3\sqrt{3}\)

equelity iff \(a=b=c=3\)

Khách vãng lai đã xóa
Phùng Minh Quân
15 tháng 1 2020 lúc 15:02

\(ab+bc+ca=abc\)\(\Leftrightarrow\)\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

\(\Sigma\frac{\sqrt{2a^2+b^2}}{ab}\ge\Sigma\frac{\sqrt{\frac{\left(2a+b\right)^2}{3}}}{ab}=\frac{1}{\sqrt{3}}\Sigma\frac{2a+b}{ab}=\frac{1}{\sqrt{3}}\Sigma\left(\frac{1}{a}+\frac{2}{b}\right)=\sqrt{3}\Sigma\frac{1}{a}=\sqrt{3}\)

Khách vãng lai đã xóa
Hỏi Làm Gì
Xem chi tiết
alibaba nguyễn
12 tháng 11 2016 lúc 16:17

a/ Nếu (a + b) < 0 thì bất  đẳng thức đúng

Với (a + b) \(\ge0\)thì ta có

\(2a^2+ab+2b^2\ge\frac{5}{4}\left(a^2+2ab+b^2\right)\)

\(\Leftrightarrow3a^2-6ab+3b^2\ge0\)

\(\Leftrightarrow3\left(a-b\right)^2\ge0\)(đúng)

Hoàng Lê Bảo Ngọc
12 tháng 11 2016 lúc 17:30

b/ Áp dụng BĐT BCS : 

\(1=\left(1.\sqrt{a}+1.\sqrt{b}+1.\sqrt{c}\right)^2\le3\left(a+b+c\right)\Rightarrow a+b+c\ge\frac{1}{3}\)

Áp dụng câu a/ :

\(\sqrt{2a^2+ab+2b^2}\ge\frac{\sqrt{5}}{2}\left(a+b\right)\)

\(\sqrt{2b^2+bc+2c^2}\ge\frac{\sqrt{5}}{2}\left(b+c\right)\)

\(\sqrt{2c^2+ac+2a^2}\ge\frac{\sqrt{5}}{2}\left(a+c\right)\)

\(\Rightarrow P\ge\frac{\sqrt{5}}{2}.2\left(a+b+c\right)\ge\frac{\sqrt{5}}{3}\)

Đẳng thức xảy ra khi \(a=b=c=\frac{1}{9}\)

Vậy min P = \(\frac{\sqrt{5}}{3}\) khi a=b=c=1/9

Nguyễn Anh Thư
Xem chi tiết
Tiến Nguyễn Minh
Xem chi tiết
Vũ Tiến Manh
21 tháng 10 2019 lúc 22:19

1) Áp dụng bunhiacopxki ta được \(\sqrt{\left(2a^2+b^2\right)\left(2a^2+c^2\right)}\ge\sqrt{\left(2a^2+bc\right)^2}=2a^2+bc\), tương tự với các mẫu ta được vế trái \(\le\frac{a^2}{2a^2+bc}+\frac{b^2}{2b^2+ac}+\frac{c^2}{2c^2+ab}\le1< =>\)\(1-\frac{bc}{2a^2+bc}+1-\frac{ac}{2b^2+ac}+1-\frac{ab}{2c^2+ab}\le2< =>\)

\(\frac{bc}{2a^2+bc}+\frac{ac}{2b^2+ac}+\frac{ab}{2c^2+ab}\ge1\)<=> \(\frac{b^2c^2}{2a^2bc+b^2c^2}+\frac{a^2c^2}{2b^2ac+a^2c^2}+\frac{a^2b^2}{2c^2ab+a^2b^2}\ge1\)  (1) 

áp dụng (x2 +y2 +z2)(m2+n2+p2\(\ge\left(xm+yn+zp\right)^2\)

(2a2bc +b2c2 + 2b2ac+a2c2 + 2c2ab+a2b2). VT\(\ge\left(bc+ca+ab\right)^2\)   <=> (ab+bc+ca)2. VT \(\ge\left(ab+bc+ca\right)^2< =>VT\ge1\)  ( vậy (1) đúng)

dấu '=' khi a=b=c

Khách vãng lai đã xóa
HD Film
21 tháng 10 2019 lúc 22:26

4b, \(\frac{a^3}{a^2+b^2}+\frac{b^3}{b^2+c^2}+\frac{c^3}{c^2+a^2}=1-\frac{ab^2}{a^2+b^2}+1-\frac{bc^2}{b^2+c^2}+1-\frac{ca^2}{a^2+c^2}\)

\(\ge3-\frac{ab^2}{2ab}-\frac{bc^2}{2bc}-\frac{ca^2}{2ac}=3-\frac{\left(a+b+c\right)}{2}=\frac{3}{2}\)

Khách vãng lai đã xóa
HD Film
21 tháng 10 2019 lúc 22:35

4c, 

\(\frac{a+1}{b^2+1}+\frac{b+1}{c^2+1}+\frac{c+1}{a^2+1}=a+b+c-\frac{b^2}{b^2+1}-\frac{c^2}{c^2+1}-\frac{a^2}{a^2+1}+3--\frac{b^2}{b^2+1}-\frac{c^2}{c^2+1}-\frac{a^2}{a^2+1}\)\(\ge6-2\cdot\frac{\left(a+b+c\right)}{2}=3\)

Khách vãng lai đã xóa
๖ۣۜDũ๖ۣۜN๖ۣۜG
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 6 2020 lúc 20:15

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}+\frac{1}{c}\ge4\left(\frac{1}{a+b}+\frac{1}{a+c}+\frac{1}{b+c}\right)\ge2\)

\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge1\)

Đặt \(\left(\frac{1}{a};\frac{1}{b};\frac{1}{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z\ge1\)

\(P=\sqrt{x^2+2y^2}+\sqrt{y^2+2z^2}+\sqrt{z^2+2x^2}\)

\(\Rightarrow P\ge\sqrt{\frac{\left(x+2y\right)^2}{3}}+\sqrt{\frac{\left(y+2z\right)^2}{3}}+\sqrt{\frac{\left(z+2x\right)^2}{3}}\)

\(\Rightarrow P\ge\frac{1}{\sqrt{3}}\left(3x+3y+3z\right)\ge\frac{3}{\sqrt{3}}=\sqrt{3}\)

Dấu "=" xảy ra khi \(x=y=z=\frac{1}{3}\) hay \(a=b=c=3\)

TítTồ
Xem chi tiết
Tran Le Khanh Linh
2 tháng 5 2020 lúc 12:56

\(\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ca}\ge\sqrt{3}\left(1\right)\)

Ta có ab+bc+ca=abc nên \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\)

\(\left(1\right)\Leftrightarrow\sqrt{\frac{1}{a^2}+\frac{2}{b^2}}+\sqrt{\frac{1}{b^2}+\frac{2}{c^2}}+\sqrt{\frac{1}{c^2}+\frac{2}{a^2}}\ge\sqrt{3}\)

Trong mặt phẳng với hệ tọa độ Oxy, với các Vecto

\(\overrightarrow{u}=\left(\frac{1}{a};\frac{\sqrt{2}}{b}\right);\left|\overrightarrow{u}\right|=\sqrt{\frac{1}{a^2}+\frac{2}{b^2}}\)

\(\overrightarrow{v}=\left(\frac{1}{b};\frac{\sqrt{2}}{c}\right)\Rightarrow\left|\overrightarrow{v}\right|=\sqrt{\frac{1}{b^2}+\frac{2}{c^2}}\)

\(\overrightarrow{w}=\left(\frac{1}{c};\frac{\sqrt{2}}{a}\right)\Rightarrow\left|\overrightarrow{w}\right|=\sqrt{\frac{1}{c^2}+\frac{2}{a^2}}\)

Ta có \(\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c};2\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\right)=\left(1;\sqrt{2}\right)\)

=> \(\left|\overrightarrow{u}\right|+\left|\overrightarrow{v}\right|+\left|\overrightarrow{w}\right|=\sqrt{1+2}=\sqrt{3}\)

Mặt khác \(\left|\overrightarrow{u}\right|+\left|\overrightarrow{v}\right|+\left|\overrightarrow{w}\right|\ge\left|\overrightarrow{u}+\overrightarrow{v}+\overrightarrow{w}\right|\)

\(\Rightarrow\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ac}\ge\sqrt{3}\)

Dấu "=" xảy ra <=> a=b=c

Khách vãng lai đã xóa
Trần
Xem chi tiết
Nguyễn Phương HÀ
13 tháng 8 2016 lúc 20:33

Hỏi đáp Toán

Hoàng Lê Bảo Ngọc
13 tháng 8 2016 lúc 20:34

Hình như đề bài có vấn đề : thừa đk ab + bc + ac  = abc

ta có : \(\frac{\sqrt{b^2+2a^2}}{ab}\ge\frac{\sqrt{4a^2b^2}}{ab}=\frac{2ab}{ab}=2\) 

Tương tự \(\frac{\sqrt{c^2+2b^2}}{bc}\ge2\) ; \(\frac{\sqrt{a^2+2c^2}}{ac}\ge2\)

\(\Rightarrow\frac{\sqrt{b^2+2a^2}}{ab}+\frac{\sqrt{c^2+2b^2}}{bc}+\frac{\sqrt{a^2+2c^2}}{ac}\ge2+2+2=6>\sqrt{3}\)

 

Hoàng Lê Bảo Ngọc
13 tháng 8 2016 lúc 20:35

Nếu thay dấu > thành >= thì ta có cách giải khác

GG boylee
Xem chi tiết
Nyatmax
5 tháng 10 2019 lúc 12:06

Dat \(P=\frac{a}{\sqrt{2b^2+2c^2-a^2}}+\frac{b}{\sqrt{2c^2+2a^2-b^2}}+\frac{c}{\sqrt{2a^2+2b^2-c^2}}\)

Ta co:

\(\frac{a}{\sqrt{2b^2+2c^2-a^2}}=\frac{\sqrt{3}a^2}{\sqrt{3a^2\left(2b^2+2c^2-a^2\right)}}\ge\frac{\sqrt{3}a^2}{a^2+b^2+c^2}\)

Tuong tu:

\(\frac{b}{\sqrt{2c^2+2a^2-b^2}}\ge\frac{\sqrt{3}b^2}{a^2+b^2+c^2}\)

\(\frac{c}{\sqrt{2a^2+2b^2-c^2}}\ge\frac{\sqrt{3}c^2}{a^2+b^2+c^2}\)

\(\Rightarrow P\ge\frac{\sqrt{3}\left(a^2+b^2+c^2\right)}{a^2+b^2+c^2}=\sqrt{3}\)

Dau '=' xay ra khi \(a=b=c\)