Cho A= x.4 + x + 1 / x-1
tìm x thuộc Z để A thuộc Z
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
1Tìm x thuộc Z
a,|x+1|=5;|x+1|=0
b,|x|=x
2,Cho|x|=5;|y|=8;tính x+y
1.
a) |x + 1| = 5
=> x +1 ∈ {5;-5}
TH1 : x + 1 = 5
x = 5 - 1
x = 4
TH2 : x + 1 = -5 (Tương tự như trên)
Vậy x ∈ {4;-6}
|x + 1| = 0
=> x + 1 = 0 (Vì 0 không phải là số âm hay dương nên chỉ có 1 TH duy nhất)
x = ... (Tự tính)
Vậy x = ...
b) |x| = x
=> x ∈ {x;-x}
Vậy x ∈ {x;-x}
2.
Ta có : |x| = 5 => x ∈ {5;-5}
|y| = 8 => y ∈ {8;-8}
Thay những số trên vào x + y rồi tính.
- Có quá khó hiểu ?
1.a) \(\left|x+1\right|=5\)
\(\Rightarrow\orbr{\begin{cases}x+1=5\\x+1=-5\end{cases}\Rightarrow}\orbr{\begin{cases}x=4\\x=-6\end{cases}}\)
\(\left|x+1\right|=0\)
\(\Rightarrow x+1=0\)
\(\Rightarrow x=-1\)
b) \(\left|x\right|=x\)
\(\Rightarrow x\in\left\{x;-x\right\}\)
2.
\(\left|x\right|=5\)
\(\Rightarrow x\in\left\{5;-5\right\}\)
\(\left|x\right|=8\)
\(\Rightarrow x\in\left\{8;-8\right\}\)
Tính
Hai số dương cộng : \(5+8=13\)
Hai số âm cộng : \(-5+-8=-14\)
Số dương cộng số âm : \(5+-5=0\)
\(8+-8=0\)
Hc tốt
Cho A= x+5/x-4 (x thuộc Z, x khác 4)
a)Tìm x thuộc Z để A có giá trị nguyên?
b) Tìm x thuộc Z để A có giá trị lớn nhất?
c)Tìm x thuộc Z để A có giá trị nhỏ nhất?
\(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=1+\frac{9}{x-4}\)
\(a)\)
\(\text{Để A có giá trị nguyên: }\)
\(\frac{9}{x-4}\in Z\)
\(x-4\inƯ\left(9\right)=\left\{\pm1;\pm3;\pm9\right\}\)
\(\rightarrow x\in\left\{1;3;\pm5;7;13\right\}\)
\(b)\)
\(\text{Để A có giá trị lớn nhất: }\)
\(\frac{9}{x-4}\)\(\text{lớn nhất}\)
\(x-4=1\)
\(x=5\)
\(c)\)
\(\text{Để A đạt giá trị nhỏ nhất:}\)
\(\frac{9}{x-4}\)\(\text{nhỏ nhất}\)
\(x-4=-1\)
\(x=3\)
Cho \(A=\frac{x+5}{x-4}=\frac{x-4+9}{x-4}=\frac{x-4}{x-4}+\frac{9}{x-4}=1+\frac{9}{x-4}\left(ĐK:x\in Z,x\ne4\right)\)
Để A nguyên \(\Rightarrow9⋮x-4\)hay \(x-4\inƯ\left(9\right)\)
Ta có \(x-4\inƯ\left(9\right)\in\left\{\pm1;\pm3;\pm9\right\}\)
\(\Rightarrow x\in\left\{5;3;7;1;13;-5\right\}\)
b, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{max}\)khi \(B_{max}\)
Vì \(9>0\)để B đặt GTLN \(\Rightarrow\hept{\begin{cases}x-4>0\\\left(x-4\right)_{min}\end{cases}}\)
Mà \(x\in N\)\(\Rightarrow x-4=1\)
\(\Rightarrow x=5\)
\(\Rightarrow B_{max}=\frac{9}{5-4}=9\)
\(\Rightarrow A_{max}=1+9=10\)khi \(x=5\)
c, Đặt \(B=\frac{9}{x-4}\)\(\Rightarrow A_{min}\)khi \(B_{min}\)
Vì \(9>0\)để B đạt GTNN \(\Rightarrow\hept{\begin{cases}x-4< 0\\\left(x-4\right)_{max}\end{cases}}\)
Mà \(x\in N\)\(\Rightarrow x-4\in Z\)
\(\Rightarrow x-4=-1\)
\(\Rightarrow x=3\)
\(\Rightarrow B_{min}=\frac{9}{3-4}=-9\)
\(\Rightarrow A_{min}=1+\left(-9\right)=\left(-8\right)\)khi \(x=3\)
cho phân số : A=3.|x|+2/4.|x|-5 (x thuộc Z)
a, Tìm x thuộc Z để A lớn nhất
b, Tìm x thuộc Z để A thuộc N
Cho \(A=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4}{x^2-4}\)
Rút gọn A
Tìm x thuộc Z để A thuộc Z
a ) \(A=\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4}{x^2-4}\)
\(=\frac{x+2-\left(x-2\right)+x^2+4}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x^2+8}{x^2-4}\)
b ) \(A=\frac{x^2+8}{x^2-4}=\frac{\left(x^2-4\right)+12}{x^2-4}=1+\frac{12}{x^2-4}\)
Để \(A\in Z\Leftrightarrow12⋮x^2-4\)
\(x^2-4\inƯ\left(12\right)=\left\{-12;-6;-4;-2;-1;1;2;4;6;12\right\}\)
Xét từng thường hợp của x ta tìm đc : \(x=\left\{-4;0;4\right\}\)
\(\frac{1}{x-2}-\frac{1}{x+2}+\frac{x^2+4}{x^2-4}\)
= \(\frac{x+2}{\left(x-2\right)\left(x+2\right)}-\frac{x-2}{\left(x+2\right)\left(x-2\right)}+\frac{x^2+2^2}{x^2-2^2}\)
= \(\frac{4}{\left(x+2\right)\left(x-2\right)}+\frac{x^2+2^2}{x^2-2^2}\)
=\(\frac{4}{x^2-2^2}+\frac{x^2+2^2}{x^2-2^2}\)
= \(\frac{4+x^2+2^2}{x^2-2^2}\)
Tìm x thuộc Z để:
a, A = 2/ x - 3 thuộc Z
b, B = 3/ x + 2 thuộc Z
c, C = 3x3 - 4x2 + x -1/ x - 4 thuộc Z
d, D = 3x2 - x + 1/ x + 2 thuộc Z
\(\left\{{}\begin{matrix}x+my=1\\x+2y=3\end{matrix}\right.\)
GIẢI HỆ PHƯƠNG TRÌNH KHI M=1
TÌM M ĐỂ HPT CÓ NGHIỆM THỎA MÃN X,Y THUỘC Z
a. Bạn tự giải
b. Hệ có nghiệm khi \(m\ne2\) , khi đó hệ tương đương:
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)y=-2\\x+2y=3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}y=\dfrac{-2}{m-2}\\x=3-2y\end{matrix}\right.\)
Do \(x=3-2y\Rightarrow\) nếu \(y\in Z\) thì \(x\in Z\)
Mà \(y=\dfrac{-2}{m-2}\Rightarrow y\in Z\) khi \(m-2=Ư\left(2\right)\)
\(\Rightarrow m-2=\left\{-2;-1;1;2\right\}\)
\(\Rightarrow m=\left\{0;1;3;4\right\}\)
Cho \(A=\frac{11-2x}{-x+4}\).Tìm:
a) x thuộc Z để A thuộc Z
b) x thuộc Z để A đạt GTLN
Cho A= 3x+2/x-3 và B= x2+3x-7/x+3.
a, Tính A khi x=1, x=2, x=5/2.
b, Tìm x thuộc Z để A là số nguyên.
c, Tìm x thuộc Z để B là số nguyên.
d, Tìm x thuộc Z để A, B cùng là số nguyên.
ĐKXĐ: \(x\ne\pm3\)
a
Khi x = 1:
\(A=\dfrac{3.1+2}{1-3}=\dfrac{5}{-2}=-2,5\)
Khi x = 2:
\(A=\dfrac{3.2+2}{2-3}=-8\)
Khi x = \(\dfrac{5}{2}:\)
\(A=\dfrac{3.2,5+2}{2,5-3}=\dfrac{9,5}{-0,5}=-19\)
b
Để A nguyên => \(\dfrac{3x+2}{x-3}\) nguyên
\(\Leftrightarrow3x+2⋮\left(x-3\right)\\3\left(x-3\right)+11⋮\left(x-3\right) \)
Vì \(3\left(x-3\right)⋮\left(x-3\right)\) nên \(11⋮\left(x-3\right)\)
\(\Rightarrow\left(x-3\right)\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\\ \Rightarrow x\left\{4;2;-8;14\right\}\)
c
Để B nguyên => \(\dfrac{x^2+3x-7}{x+3}\) nguyên
\(\Rightarrow x\left(x+3\right)-7⋮\left(x+3\right)\)
\(\Rightarrow-7⋮\left(x+3\right)\\ \Rightarrow x+3\inƯ\left\{\pm1;\pm7\right\}\)
\(\Rightarrow x=\left\{-4;-11;-2;4\right\}\)
d
\(\left\{{}\begin{matrix}A.nguyên.\Leftrightarrow x=\left\{-8;2;4;14\right\}\\B.nguyên\Leftrightarrow x=\left\{-11;-4;-2;4\right\}\end{matrix}\right.\)
=> Để A, B cùng là số nguyên thì x = 4.
1Tìm x,y biết
(x + 5).(x-y) = 72
Tìm x thuộc Z biết
2a + 27:a+1
bộ bạn tự nghĩ ra đề hả, ko có điều kiện của x,y thì làm sao tìm được
câu b thì ko có kết quả, tìm kiểu gì