1. Cho a,b>0. Tìm Pmin
P=\(\frac{a^2+b^2}{ab}+\frac{ab}{a^2+b^2}\)
cho a,b>0; a+b-1>0 :\(\left(a+b-1\right)^2=ab\)
tìm min của \(\frac{1}{ab}+\frac{1}{a^2+b^2}+\frac{\sqrt{ab}}{a+b}\)
cho biểu thức : \(P=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a}-\frac{1}{b}\right)^2}{\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)}\) với a>0 ; b>0 ; a khác b
a. CM : P=1/ab
b. giả sử a,b thay đổi sao cho \(4a+b+\sqrt{ab}=1\) . Tìm min P
Đặt \(x=\frac{a}{b}+\frac{b}{a}\Rightarrow\frac{a^2}{b^2}+\frac{b^2}{a^2}=x^2-2\)
Xét mẫu thức : \(\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)=x^2-x-2=\left(x+1\right)\left(x-2\right)\)
Thay \(x=\frac{a}{b}+\frac{b}{a}\) được mẫu thức : \(\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{a}{b}+\frac{b}{a}-2\right)=\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{ab}\)
Ta có : \(P=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a}-\frac{1}{b}\right)^2}{\frac{a^2}{b^2}+\frac{b^2}{a^2}-\left(\frac{a}{b}+\frac{b}{a}\right)}=\frac{\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{a^2b^2}}{\left(\frac{a}{b}+\frac{b}{a}+1\right).\frac{\left(a-b\right)^2}{ab}}\)
\(=\frac{\left(a-b\right)^2}{a^2b^2}.\frac{ab}{\left(a-b\right)^2}=\frac{1}{ab}\) (đpcm)
b) Áp dụng bđt Cauchy :
\(1=4a+b+\sqrt{ab}\ge2\sqrt{4a.b}+\sqrt{ab}\)
\(\Rightarrow5\sqrt{ab}\le1\Rightarrow ab\le\frac{1}{25}\)
\(\Rightarrow P=\frac{1}{ab}\ge25\) . Dấu "=" xảy ra khi \(\begin{cases}4a+b+\sqrt{ab}=1\\4a=b\end{cases}\)
\(\Leftrightarrow\begin{cases}a=\frac{1}{10}\\b=\frac{2}{5}\end{cases}\)
Vậy P đạt giá trị nhỏ nhất bằng 25 tại \(\left(a;b\right)=\left(\frac{1}{10};\frac{2}{5}\right)\)
1,Cho a,b,c>0 thỏa mãn a+b+c=abc.CMR:
\(\frac{bc}{a\left(1+bc\right)}+\frac{ca}{b\left(1+ca\right)}+\frac{ab}{c\left(1+ab\right)}\ge\frac{3\sqrt{3}}{4}\)
2,Cho a,b,c>0 thỏa mãn \(a^2+b^2+c^2=3\)
Tìm GTLN của P= \(\sqrt{\frac{a^2}{a^2+b+c}}+\sqrt{\frac{b^2}{b^2+c+a}}+\sqrt{\frac{c^2}{c^2+a+b}}\)
3,Cho a,b,c>0 thỏa mãn a+b+c=3.
Tìm GTLN của Q= \(2\sqrt{abc}\left(\frac{1}{\sqrt{3a^2+4b^2+5}}+\frac{1}{\sqrt{3b^2+4c^2+5}}+\frac{1}{\sqrt{3c^2+4a^2+5}}\right)\)
4,Cho a,b,c>0.
Tìm GTLN của P= \(\frac{\sqrt{ab}}{c+3\sqrt{ab}}+\frac{\sqrt{bc}}{a+3\sqrt{bc}}+\frac{\sqrt{ca}}{b+3\sqrt{ca}}\)
ko khó nhưng mà bn đăng từng câu 1 hộ mk mk giải giúp cho
gt <=> \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)
Đặt: \(\frac{1}{a}=x;\frac{1}{b}=y;\frac{1}{c}=z\)
=> Thay vào thì \(VT=\frac{\frac{1}{xy}}{\frac{1}{z}\left(1+\frac{1}{xy}\right)}+\frac{1}{\frac{yz}{\frac{1}{x}\left(1+\frac{1}{yz}\right)}}+\frac{1}{\frac{zx}{\frac{1}{y}\left(1+\frac{1}{zx}\right)}}\)
\(VT=\frac{z}{xy+1}+\frac{x}{yz+1}+\frac{y}{zx+1}=\frac{x^2}{xyz+x}+\frac{y^2}{xyz+y}+\frac{z^2}{xyz+z}\ge\frac{\left(x+y+z\right)^2}{x+y+z+3xyz}\)
Có BĐT x, y, z > 0 thì \(\left(x+y+z\right)\left(xy+yz+zx\right)\ge9xyz\)Ta thay \(xy+yz+zx=1\)vào
=> \(x+y+z\ge9xyz=>\frac{x+y+z}{3}\ge3xyz\)
=> Từ đây thì \(VT\ge\frac{\left(x+y+z\right)^2}{x+y+z+\frac{x+y+z}{3}}=\frac{3}{4}\left(x+y+z\right)\ge\frac{3}{4}.\sqrt{3\left(xy+yz+zx\right)}=\frac{3}{4}.\sqrt{3}=\frac{3\sqrt{3}}{4}\)
=> Ta có ĐPCM . "=" xảy ra <=> x=y=z <=> \(a=b=c=\sqrt{3}\)
Đặt: \(\sqrt{a}=x;\sqrt{b}=y;\sqrt{c}=z\)
=> \(P=\frac{xy}{z^2+3xy}+\frac{yz}{x^2+3yz}+\frac{zx}{y^2+3zx}\)
=> \(3P=\frac{3xy}{z^2+3xy}+\frac{3yz}{x^2+3yz}+\frac{3zx}{y^2+3zx}=1-\frac{z^2}{z^2+3xy}+1-\frac{x^2}{x^2+3yz}+1-\frac{y^2}{y^2+3zx}\)
Ta sẽ CM: \(3P\le\frac{9}{4}\)<=> Cần CM: \(\frac{x^2}{x^2+3yz}+\frac{y^2}{y^2+3zx}+\frac{z^2}{z^2+3xy}\ge\frac{3}{4}\)
Có: \(VT\ge\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)
Ta sẽ CM: \(\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\ge\frac{3}{4}\)
<=> \(4\left(x+y+z\right)^2\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)
<=> \(4\left(x^2+y^2+z^2\right)+8\left(xy+yz+zx\right)\ge3\left(x^2+y^2+z^2\right)+9\left(xy+yz+zx\right)\)
<=> \(x^2+y^2+z^2\ge xy+yz+zx\)
Mà đây lại là 1 BĐT luôn đúng => \(3P\le\frac{9}{4}\)=> \(P\le\frac{3}{4}\)
Vậy P max \(=\frac{3}{4}\)<=> \(a=b=c\)
Tìm GTNN của \(M=\frac{1}{ab} +\frac{1}{a^2+ab}+\frac{1}{b^2+ab}+\frac{1}{a^2+b^2}\) với a+b=1 và a;b>0
Lời gải:
Áp dụng BĐT Cauchy Schwarz và BĐT AM-GM:
$M=\frac{1}{2ab}+\frac{1}{2ab}+\frac{1}{a^2+ab}+\frac{1}{b^2+ab}+\frac{1}{a^2+b^2}$
$\geq \frac{(1+1+1+1+1)^2}{2ab+2ab+a^2+ab+b^2+ab+a^2+b^2}=\frac{25}{2a^2+2b^2+6ab}$
$=\frac{25}{2(a^2+b^2+2ab)+2ab}$
$=\frac{25}{2(a+b)^2+2ab}=\frac{25}{2+2ab}\geq \frac{25}{2+2.\frac{(a+b)^2}{4}}=\frac{25}{2+\frac{2}{4}}=10$
Vậy $M_{\min}=10$. Giá trị này đạt tại $a=b=\frac{1}{2}$
Cho a,b >0 tm 4a^2+b^2+ab=1
Tìm min của P=\(\left(\frac{a}{b}+\frac{b}{a}+1\right)\left(\frac{1}{a}-\frac{1}{b}\right)^2:\left[\frac{a^2}{b^2}+\frac{b^2}{a^2}\left(\frac{a}{b}+\frac{b}{a}\right)\right]\)
Cho a,b>0. Tìm GTNN của \(\frac{a^2+b^2}{ab}+\frac{ab}{a^2+b^2}\)
Có : a^2+b^2 >= 2ab
Biểu thức trên = (a^2+b^2/4ab+ab/a^2+b^2)+3/4 (a^2+b^2/ab)
>= 2\(\sqrt{\frac{a^2+b^2}{4ab}.\frac{ab}{a^2+b^2}}\)+ 3/4 . 2 = 2.1/2+3/2 = 1+3/2 = 5/2
Dấu "=" xảy ra <=> a=b>0
Vậy GTNN của biểu thức trên = 5/2 <=> a=b > 0
k mk nha
Đặt \(\frac{a^2+b^2}{ab}=x\). Do \(a^2+b^2\ge2ab\). Chia cả hai vế cho ab được \(x\ge2\)
Đưa về dạng tìm GTNN của \(x+\frac{1}{x}\) với \(x\ge2\) được \(A_{min}=\frac{5}{2}\)
Vậy \(A_{min}=\frac{5}{2}\Leftrightarrow a=b\)
Bài 1: Cho a,b,c >0 và ab+bc+ca=3abc.
Chứng minh: \(\frac{a}{a^2+bc}+\frac{b}{b^2+ac}+\frac{c}{c^2+ab}\le\frac{3}{2}\)
Bài 2: Cho a,b > 0; \(2a+b\ge7.\)
Tìm GTNN của: S=\(a^2-a+3b+\frac{9}{a}+\frac{1}{b}+9\)
Help me!!!
CHo a,b,c>0 Tìm Min của \(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{ab}\)
- Xin chào <33 Mình là Himakoto <33
- Mình nhận làm ảnh Anime nhé <3
- Mình nhận làm theo mọi kích cỡ <33 Bạn nào có nhu cầu thì điền vào bản dưới và đăng dưới phần bình luận nhé <33 Mình sẽ làm thật nhanh cho bạn <33
>>Bản đặt ảnh<<
. Tên bạn :
. Bạn đặt ảnh thể loại ( anime, manga, vocaloid, ... ) :
. Kích cỡ ảnh :
. Chúc :
- Vậy thôi <33 Hãy ủng hộ Shop tụi mình bằng cách Addfriend ( Kết Bạn ) với Shop nhé <33
- Iu các bựn lém tơ <33
cho \(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}=3\) (a, b, c > 0)
Tìm gtnn của P= \(\frac{ab^2}{a+b}+\frac{bc^2}{b+c}+\frac{ca^2}{a+c}\)