Số?
a) \(\dfrac{2}{5}+.?..=\dfrac{3}{2}\) b) \(\dfrac{2}{3}-.?..=\dfrac{1}{2}\)
Tìm số nguyên x, biết:
a) \(-4\dfrac{3}{5}\). \(2\dfrac{4}{3}\) < x < \(-2\dfrac{3}{5}\) : \(1\dfrac{6}{15}\)
b) \(-4\dfrac{1}{3}\).(\(\dfrac{1}{2}\)-\(\dfrac{1}{6}\)) < x < - \(\dfrac{2}{3}\).(\(\dfrac{1}{3}\) - \(\dfrac{1}{2}\) - \(\dfrac{3}{4}\))
a) Ta có \(-4\dfrac{3}{5}\cdot2\dfrac{4}{3}=-\dfrac{23}{5}\cdot\dfrac{10}{3}=-\dfrac{46}{3}\) và \(-2\dfrac{3}{5}\div1\dfrac{6}{15}=-\dfrac{13}{5}\div\dfrac{7}{5}=-\dfrac{13}{7}\)
Do đó \(-\dfrac{46}{3}< x< -\dfrac{13}{7}\)
Lại có \(-\dfrac{46}{3}\le-15\) và \(-\dfrac{13}{7}\ge-2\)
Suy ra \(-15\le x\le-2\), x ϵ Z
b) Ta có \(-4\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{6}\right)=-\dfrac{13}{3}\cdot\dfrac{1}{3}=-\dfrac{13}{9}\) và \(-\dfrac{2}{3}\left(\dfrac{1}{3}-\dfrac{1}{2}-\dfrac{3}{4}\right)=-\dfrac{2}{3}\cdot\dfrac{-11}{12}=\dfrac{11}{18}\)
Do đó \(-\dfrac{13}{9}< x< \dfrac{11}{18}\)
Lại có \(-\dfrac{13}{9}\le-1\) và \(\dfrac{11}{18}\ge0\)
Suy ra \(-1\le x\le0\), x ϵ Z
b, -4\(\dfrac{1}{3}\).(\(\dfrac{1}{2}\) - \(\dfrac{1}{6}\)) < \(x\) < - \(\dfrac{2}{3}\).(\(\dfrac{1}{3}\) - \(\dfrac{1}{2}\) - \(\dfrac{3}{4}\))
- \(\dfrac{13}{3}\).\(\dfrac{1}{3}\) < \(x\) < - \(\dfrac{2}{3}\).(-\(\dfrac{11}{12}\))
- \(\dfrac{13}{9}\) < \(x\) < \(\dfrac{11}{18}\)
\(x\) \(\in\) { -1; 0; 1}
a, -4\(\dfrac{3}{5}\).2\(\dfrac{4}{3}\) < \(x\) < -2\(\dfrac{3}{5}\): 1\(\dfrac{6}{15}\)
- \(\dfrac{23}{5}\).\(\dfrac{10}{3}\) < \(x\) < - \(\dfrac{13}{5}\): \(\dfrac{21}{15}\)
- \(\dfrac{46}{3}\) < \(x\) < - \(\dfrac{13}{7}\)
\(x\) \(\in\) {-15; -14;-13;..; -2}
Biết biểu thức
\(P=\sqrt{\dfrac{1}{4}+\dfrac{1}{1^2}+\dfrac{1}{3^2}}+\sqrt{\dfrac{1}{4}+\dfrac{1}{3^2}+\dfrac{1}{5^2}}+...+\sqrt{\dfrac{1}{4}+\dfrac{1}{399^2}+\dfrac{1}{401^2}}=\dfrac{a}{b};\)
, với a và b là các số nguyên dương, a/ b là phân số tối giản. Khi đó giá trị của biểu thức
Q= a −100b bằng
A. 400 . B. 401. C. 403. D. 402 .
\(\sqrt{\dfrac{1}{4}+\dfrac{1}{\left(2n-1\right)^2}+\dfrac{1}{\left(2n+1\right)^2}}=\sqrt{\dfrac{\left(2n-1\right)^2\left(2n+1\right)^2+4\left(2n-1\right)^2+4\left(2n+1\right)^2}{4\left(2n-1\right)^2\left(2n+1\right)^2}}\)
\(=\sqrt{\dfrac{\left(4n^2-1\right)^2+4\left(4n^2-4n+1\right)+4\left(4n^2+4n+1\right)}{4\left(2n-1\right)^2\left(2n+1\right)^2}}\)
\(=\sqrt{\dfrac{16n^4+24n^2+9}{4\left(2n-1\right)^2\left(2n+1\right)^2}}=\sqrt{\dfrac{\left(4n^2+3\right)^2}{4\left(2n-1\right)^2\left(2n+1\right)^2}}=\dfrac{4n^2+3}{2\left(2n-1\right)\left(2n+1\right)}\)
\(=\dfrac{\left(4n^2-1\right)+4}{2\left(2n-1\right)\left(2n+1\right)}=\dfrac{1}{2}+\dfrac{2}{\left(2n-1\right)\left(2n+1\right)}\)
\(=\dfrac{1}{2}+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\)
Do đó:
\(P=\left(\dfrac{1}{2}+\dfrac{1}{1}-\dfrac{1}{3}\right)+\left(\dfrac{1}{2}+\dfrac{1}{3}-\dfrac{1}{5}\right)+...+\left(\dfrac{1}{2}-\dfrac{1}{399}-\dfrac{1}{401}\right)\)
\(=\dfrac{1}{2}.200+1-\dfrac{1}{401}=\dfrac{40500}{401}\)
\(\Rightarrow Q=400\)
Bài 1: Quy đồng mẫu số các phân số sau
a) \(\dfrac{1}{2}\);\(\dfrac{2}{3}\) và \(\dfrac{3}{4}\)
b) \(\dfrac{1}{3}\);\(\dfrac{2}{15}\) và \(\dfrac{4}{45}\)
c) \(\dfrac{1}{8}\);\(\dfrac{2}{3}\) và \(\dfrac{5}{2}\)
d) \(\dfrac{2}{7}\);\(\dfrac{9}{4}\) và \(\dfrac{5}{28}\)
(Các bạn ko cần viết kết luận đâu ah!)
Bài 2:
a) Hãy viết 4 và \(\dfrac{9}{4}\) thành hai phân số có mẫu số chung là 12.
b) Hãy viết \(\dfrac{5}{8}\);\(\dfrac{25}{30}\) và 2 thành các phân số có mẫu số chung là 240.
Bài 1:
a)
\(\dfrac{1}{2}=\dfrac{1\times6}{2\times6}=\dfrac{6}{12}\)
\(\dfrac{2}{3}=\dfrac{2\times4}{3\times4}=\dfrac{8}{12}\)
\(\dfrac{3}{4}=\dfrac{3\times3}{4\times3}=\dfrac{9}{12}\)
b)
\(\dfrac{1}{3}=\dfrac{1\times15}{3\times15}=\dfrac{15}{45}\)
\(\dfrac{2}{15}=\dfrac{2\times3}{15\times3}=\dfrac{6}{45}\)
\(\dfrac{4}{45}\) (giữ nguyên)
c)
\(\dfrac{1}{8}=\dfrac{1\times3}{8\times3}=\dfrac{3}{24}\)
\(\dfrac{2}{3}=\dfrac{2\times8}{3\times8}=\dfrac{16}{24}\)
\(\dfrac{5}{2}=\dfrac{5\times12}{2\times12}=\dfrac{60}{24}\)
d)
\(\dfrac{2}{7}=\dfrac{2\times4}{7\times4}=\dfrac{8}{28}\)
\(\dfrac{9}{4}=\dfrac{9\times7}{4\times7}=\dfrac{63}{28}\)
\(\dfrac{5}{28}\) (giữ nguyên)
Bài 2:
a)
\(4=\dfrac{4}{1}=\dfrac{4\times12}{1\times12}=\dfrac{48}{12}\)
\(\dfrac{9}{4}=\dfrac{9\times3}{4\times3}=\dfrac{27}{12}\)
b)
\(\dfrac{5}{8}=\dfrac{5\times30}{8\times30}=\dfrac{150}{240}\)
\(\dfrac{25}{30}=\dfrac{5}{6}=\dfrac{5\times40}{6\times40}=\dfrac{200}{240}\)
\(2=\dfrac{2}{1}=\dfrac{2\times240}{1\times240}=\dfrac{480}{240}\).
1. Tính :
a, \(A=\dfrac{\dfrac{1}{3}-\dfrac{5}{2}}{\dfrac{3}{4}-\dfrac{1}{2}}.\dfrac{\dfrac{5}{6}+\dfrac{7}{3}}{1-\dfrac{5}{6}}.\dfrac{\dfrac{-2}{5}+1}{\dfrac{2}{5}-1}\).
b, \(B=\dfrac{\dfrac{1}{3}-\dfrac{4}{5}}{\dfrac{1}{3}+\dfrac{4}{5}}.\dfrac{\dfrac{3}{4}-\dfrac{5}{3}}{\dfrac{3}{4}+\dfrac{5}{3}}:\dfrac{\dfrac{4}{5}-1}{1-\dfrac{2}{3}}\).
Tính tổng đại số
\(A=\dfrac{1}{2}-\dfrac{1}{3}-\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{2}{4}+\dfrac{3}{4}-\dfrac{1}{5}-\dfrac{2}{5}-\dfrac{3}{5}-\dfrac{4}{5}+...+\dfrac{1}{10}+\dfrac{2}{10}+...+\dfrac{9}{10}\)
\(B=\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{2}{3}+\dfrac{1}{4}+\dfrac{2}{4}+\dfrac{3}{4}+...+\dfrac{1}{n}+\dfrac{2}{n}+...+\dfrac{n-1}{n}\)\(\left(n\in Z,n\ge2\right)\)
Cho a, b là những số thực dương. Rút gọn các biểu thức sau:
\(a)\ \dfrac{a^{\dfrac{4}{3}}(a^{\dfrac{-1}{3}}+a^{\dfrac{2}{3}})}{a^{\dfrac{1}{4}}(a^{\dfrac{3}{4}}+a^{\dfrac{-1}{4}})}\)
\(b)\ \dfrac{b^{\dfrac{1}{5}} (\sqrt[5]{b^4}-\sqrt[5]{b^{-1}})}{b^{\dfrac{2}{3}}(\sqrt[3]{b}-\sqrt[3]{b^{-2}})}\)
\(c)\ \dfrac{a^{\dfrac{1}{3}}b^{\dfrac{-1}{3}}-a^{\dfrac{-1}{3}}b^{\dfrac{1}{3}}}
{\sqrt[3]{a^2}-\sqrt[3]{b^2}}\)
\(d)\ \dfrac{a^{\dfrac{1}{3}} \sqrt{b}+b^{\dfrac{1}{3}} \sqrt{a}}
{\sqrt[6]{a}+\sqrt[6]{b}}\)
a) = =
b) = = = . ( Với điều kiện b # 1)
c) \(\dfrac{a^{\dfrac{1}{3}}b^{-\dfrac{1}{3}-}a^{-\dfrac{1}{3}}b^{\dfrac{1}{3}}}{\sqrt[3]{a^2}-\sqrt[3]{b^2}}\)= = = ( với điều kiện a#b).
d) \(\dfrac{a^{\dfrac{1}{3}}\sqrt{b}+b^{\dfrac{1}{3}}\sqrt{a}}{\sqrt[6]{a}+\sqrt[6]{b}}\) = = = =
a) Viết phân số đảo ngược của mỗi phân số sau: \(\dfrac{5}{8}\); \(\dfrac{3}{4}\); \(\dfrac{1}{2}\)
b) Tính
\(\dfrac{3}{7}:\dfrac{5}{8}\) \(\dfrac{8}{7}:\dfrac{3}{4}\) \(\dfrac{1}{3}:\dfrac{1}{2}\)
a) Các phân số đảo ngược là:
\(\dfrac{5}{8}\rightarrow\dfrac{8}{5};\dfrac{3}{4}\rightarrow\dfrac{4}{3};\dfrac{1}{2}\rightarrow\dfrac{2}{1}=2\)
b) \(\dfrac{3}{7}:\dfrac{5}{8}=\dfrac{3}{7}\times\dfrac{8}{5}=\dfrac{24}{35}\)
\(\dfrac{8}{7}:\dfrac{3}{4}=\dfrac{8}{7}\times\dfrac{4}{3}=\dfrac{32}{21}\)
\(\dfrac{1}{3}:\dfrac{1}{2}=\dfrac{1}{3}\times2=\dfrac{2\times1}{3}=\dfrac{2}{3}\)
a) \(\dfrac{5}{2}\) \(+\dfrac{2}{3}-\dfrac{3}{4}\)
b)\(\dfrac{4}{5}-\dfrac{1}{2}+\dfrac{1}{3}\)
c)\(\dfrac{2}{5}\times\dfrac{1}{2}\div\dfrac{1}{3}\)
a, 5/2 + 2/3 - 3/4
= 19/6 - 3/4
= 29/12
b, 4/5 - 1/2 + 1/3
= 3/10 + 1/3
= 19/30
Tìm số thích hợp cho ?:
a) \(\dfrac{-2}{3}\cdot\dfrac{?}{4}=\dfrac{1}{2};\)
b) \(\dfrac{?}{3}\cdot\dfrac{5}{8}=\dfrac{-5}{12};\)
c) \(\dfrac{5}{6}\cdot\dfrac{3}{?}=\dfrac{1}{4}.\)
\(a.\)
\(-\dfrac{2}{3}\cdot\dfrac{?}{4}=\dfrac{1}{2}\)
\(\Leftrightarrow\dfrac{?}{4}=\dfrac{1}{2}:-\dfrac{2}{3}=\dfrac{1}{2}\cdot-\dfrac{3}{2}=-\dfrac{3}{4}\)
\(\Leftrightarrow?=-3\)
\(b.\)
\(\dfrac{?}{3}\cdot\dfrac{5}{8}=-\dfrac{5}{12}\)
\(\Leftrightarrow\dfrac{?}{3}=\dfrac{-5}{12}:\dfrac{5}{8}=\dfrac{-5}{12}\cdot\dfrac{8}{5}=-\dfrac{2}{3}\)
\(\Leftrightarrow?=-2\)
\(c.\)
\(\dfrac{5}{6}\cdot\dfrac{3}{?}=\dfrac{1}{4}\)
\(\Leftrightarrow\dfrac{3}{?}=\dfrac{1}{4}:\dfrac{5}{6}=\dfrac{1}{4}\cdot\dfrac{6}{5}=\dfrac{3}{10}\)
\(\Leftrightarrow?=10\)
Mk gọi ? = x nha
a) \(\dfrac{-2}{3}.\dfrac{x}{4}=\dfrac{1}{2}\)
\(\dfrac{x}{4}=\dfrac{1}{2}:\dfrac{-2}{3}\)
\(\dfrac{x}{4}=\dfrac{-3}{4}\)
⇒x=-3
b)\(\dfrac{x}{3}.\dfrac{5}{8}=\dfrac{-5}{12}\)
\(\dfrac{x}{3}=\dfrac{-5}{12}:\dfrac{5}{8}\)
\(\dfrac{x}{3}=\dfrac{-2}{3}\)
⇒x=-2
c)\(\dfrac{5}{6}.\dfrac{3}{x}=\dfrac{1}{4}\)
\(\dfrac{3}{x}=\dfrac{1}{4}:\dfrac{5}{6}\)
\(\dfrac{3}{x}=\dfrac{3}{10}\)
⇒x=10
tìm x,y viết dưới dạng phân số
a. \(5+\dfrac{x}{5+\dfrac{2}{5+\dfrac{3}{5+\dfrac{4}{5}}}}=\dfrac{x}{1+\dfrac{5}{2+\dfrac{4}{3+\dfrac{3}{5+\dfrac{1}{6}}}}}\)
b.
\(\dfrac{y}{3+\dfrac{5}{2+\dfrac{4}{2+\dfrac{5}{2+\dfrac{4}{2+\dfrac{5}{3}}}}}}+\dfrac{y}{7+\dfrac{1}{3+\dfrac{1}{3+\dfrac{1}{4}}}}\)
= 2
c,
\(x.\left(\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+\dfrac{1}{1+1}}}}}}}}\right)=\)\(2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{2+\dfrac{1}{2}}}}}}}\)+\(x.\left(3+\dfrac{1}{3-\dfrac{1}{3+\dfrac{1}{3+\dfrac{1}{3-\dfrac{1}{3}}}}}\right)\)
Giair bằng máy tính casio
bài này đúng là thị của phi...vô của lí ... :))