CM nếu x4-4x3+5ax2-4bx+c chia hết cho đa thức x3+3x2-9x-3 thì a+b+c=0
Đề ra:
1. Cho f(x)= x4-4x3+5ax2-4bx+c CMR: Nếu f(x) chia hết cho x3+3x2+9x-3 thì a+b+c=0 2. Cho f(x) = 4x3+ax+b. Biết f(x) chia hết cho x-2 và x+1 Tính 2a-3b
Các bạn giúp mình vs nha mình cần gấp. Thanks nhìu nhoazzzCM nếu x4-4x3+5ax2-4bx+c chia hết cho đa thức x3+3x2-9x-3 thì a+b+c=0
x4-4x3+5ax2-4bx+c = x. (x3 + 3x2 - 9x - 3) - 3x3 + 9x2 + 3x - 4x3 + 5ax2 - 4bx + c
= x. (x3 + 3x2 - 9x - 3) - 7x3 + (5a + 9)x2 + (3 - 4b)x + c
= x. (x3 + 3x2 - 9x - 3) - 7 .(x3 + 3x2 - 9x - 3) + 21x2 - 63x - 21 + (5a + 9)x2 + (3 - 4b)x + c
= (x - 7)(x3 + 3x2 - 9x - 3) + (5a + 30)x2 + (-4b - 60) x + c - 21
=> Đa thức x4-4x3+5ax2-4bx+c chia cho (x3 + 3x2 - 9x - 3) được thương là x - 7 và dư (5a + 30)x2 + (-4b - 60) x + c - 21
Phép chia là phép chia hết nên dư = 0
=> (5a + 30)x2 + (-4b - 60) x + c - 21 = 0 với mọi x
=> 5a + 30 = -4b - 60 = c - 21 = 0
=> a = -6; b = -15; c = 21 => a +b + c = 0
Bài 5: Tìm a, b sao cho
a/ Đa thức x4 – x3 + 6x2 – x + a chia hết cho đa thức x2 – x + 5
b/ Đa thức 2x3 – 3x2 + x + a chia hết cho đa thức x + 2.
Đặt \(f\left(x\right)=2x^3-3x^2+x+a\)
Ta có: phép chia \(f\left(x\right)\) cho \(x+2\) có dư là \(R=f\left(-2\right)\)
\(\Rightarrow f\left(-2\right)=2.\left(-2\right)^3-3.\left(-2\right)^2+\left(-2\right)+a\)
\(f\left(-2\right)=2.\left(-8\right)-3.4-2+a\)
\(f\left(-2\right)=-16-12-2+a\)
\(f\left(-2\right)=-20+a\)
Để \(f\left(x\right)\) chia hết cho \(x+2\) thì \(R=0\) hay \(f\left(-2\right)=0\)
\(\Rightarrow-20+a=0\Leftrightarrow a=20\)
Câu 10. Nếu đa thức x4 – x3 +6x – x – a chia hết cho đa thức x2 – x + 5 thì
A. a = 0 B. a = 15 C. a = -5 D. a = 5
Câu 10. Nếu đa thức x4 – x3 +6x – x – a chia hết cho đa thức x2 – x + 5 thì
A. a = 0 B. a = 15 C. a = -5 D. a = 5
CMR nếu
x^4-4x^3+5ax^2-4bx+c chia hết cho x^3+3x^2-9x-3 thì a+b+c =0
ta có x^4-4x^3+5ax^2-4bx+c
= ( x^3+3x^2-9x-3)( x+m)
= x^4+ ( m+3)x^3 + (3m-9)x^2 - ( 9m+3)x -3m
=> m+3 = -4 => m=-7
3m -9 =5a => a=-6
9m +3 = 4b => b=-15
-3m=c => c= 21
vậy a+b+c =0
|
Bài 5:
1) a) Cho hai đa thức:
P (x) = 5x2 + 3x3 - 5x2 + 2x3 – 2 +4x – 4x2 + x3
Q(x) = 6x – x3 + 5 – 4x3 + 6 – 3x2 – 7x2
Tính M(x) = P(x) + Q(x)
b) Tìm C(x) biết: (5x2 + 9x – 3x4 + 7x3 -12) + C(x) = -2x3 + 9 – 6x + 7x4 -2x3
2) Tìm nghiệm của các đa thức sau
a) 4x - b) x2 – 4x +3
a: P(x)=6x^3-4x^2+4x-2
Q(x)=-5x^3-10x^2+6x+11
M(x)=x^3-14x^2+10x+9
b: \(C\left(x\right)=7x^4-4x^3-6x+9+3x^4-7x^3-5x^2-9x+12\)
=10x^4-11x^3-5x^2-15x+21
Phân tích các đa thức sau thành nhân tử
a,x4+2x3+3x2+2x+1
b,x4-4x3+2x2+4x+1
c,x4+x3+2x2+2x+4
Bài 1. Cho hai đa thức:
P(x) = 2x4 + 3x3 + 3x2 - x4 - 4x + 2 - 2x2 + 6x
Q(x) = x4 + 3x2 + 5x - 1 - x2 - 3x + 2 + x3
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm
dần của biến.
b) Tính. P(x) + Q (x), P(x) - Q(x), Q(x) - P(x).
Bài 2. Cho hai đa thức:
P(x) = x5 + 5 - 8x4 + 2x3 + x + 5x4 + x2 - 4x3
Q(x) = (3x5 + x4 - 4x) - ( 4x3 - 7 + 2x4 + 3x5)
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm
dần của biến.
b) Tính P(x) + Q(x), P(x) - Q(x)
Bài 5. Cho hai đa thức:
P(x) = 2x4 + 2x3 - 3x2 + x +6
Q(x) = x4 - x3 - x2 + 2x + 1
a) Tính P(x) + Q(x), P(x) - Q(x)
b) Tính và P(x) - 2Q(x).
Bài 6. Cho đa thức P(x) = 2x4 - x2 +x - 2.
Tìm các đa thức Q(x), H(x), R(x) sao cho:
a) Q(x) + P(x) = 3x4 + x3 + 2x2 + x + 1
b) P(x) - H(x) = x4 - x3 + x2 - 2
c) R(x) - P(x) = 2x3 + x2 + 1