Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Phạm Phương Quỳnh
Xem chi tiết
Nguyễn Đức Trí
14 tháng 7 2023 lúc 22:08

a) \(-7n+3⋮n-1\)

\(\Rightarrow\left(-7n+3\right).1-\left(-7\right).\left(n-1\right)⋮n-1\)

\(\Rightarrow-7n+3+7n-7⋮n-1\)

\(\Rightarrow-4⋮n-1\)

\(\Rightarrow n-1\in\left\{-1;1;-2;2;-4;4\right\}\)

\(\Rightarrow n\in\left\{0;2;-1;3;-3;5\right\}\)

b) \(4n+5⋮4-n\)

\(\Rightarrow\left(4n+5\right).1-\left(-4\right)\left(4-n\right)⋮4-n\)

\(\Rightarrow4n+5-4n+16⋮4-n\)

\(\Rightarrow21⋮4-n\)

\(\Rightarrow4-n\in\left\{-1;1;-3;3;-7;7;-21;21\right\}\)

\(\Rightarrow n\in\left\{5;3;7;1;11;-3;25;-17\right\}\)

c) \(3n+4⋮2n+1\)

\(\Rightarrow\left(3n+4\right).2-3.\left(2n+1\right)⋮2n+1\)

\(\Rightarrow6n+8-6n-3+1⋮2n+1\)

\(\Rightarrow5⋮2n+1\)

\(\Rightarrow2n+1\in\left\{-1;1;-5;5\right\}\)

\(\Rightarrow n\in\left\{-1;0;-3;2\right\}\)

d) \(4n+7⋮3n+1\)

\(\Rightarrow\left(4n+7\right).3-4.\left(3n+1\right)⋮3n+1\)

\(\Rightarrow12n+21-12n-4⋮3n+1\)

\(\Rightarrow17⋮3n+1\)

\(\Rightarrow n\in\left\{-\dfrac{2}{3};0;-6;\dfrac{16}{3}\right\}\Rightarrow n\in\left\{0;-6\right\}\left(n\in Z\right)\)

\(\Rightarrow3n+1\in\left\{-1;1;-17;17\right\}\)

Thuốc Hồi Trinh
14 tháng 7 2023 lúc 21:41

a) Ta có: -7n + 3 chia hết cho n - 1

=> (-7n + 3) % (n - 1) = 0

=> -7n + 3 = k(n - 1), với k là một số nguyên

=> -7n + 3 = kn - k => (k - 7)n = k - 3

=> n = (k - 3)/(k - 7),

với k - 7 khác 0 Vậy n thuộc Z khi và chỉ khi k - 7 khác 0.

b) Ta có: 4n + 5 chia hết cho 4 - n

=> (4n + 5) % (4 - n) = 0

=> 4n + 5 = k(4 - n), với k là một số nguyên

=> 4n + 5 = 4k - kn

=> (4 + k)n = 4k - 5

=> n = (4k - 5)/(4 + k), với 4 + k khác 0

Vậy n thuộc Z khi và chỉ khi 4 + k khác 0.

c) Ta có: 3n + 4 chia hết cho 2n + 1

=> (3n + 4) % (2n + 1) = 0

=> 3n + 4 = k(2n + 1), với k là một số nguyên

=> 3n + 4 = 2kn + k

=> (2k - 3)n = k - 4

=> n = (k - 4)/(2k - 3), với 2k - 3 khác 0

Vậy n thuộc Z khi và chỉ khi 2k - 3 khác 0.

d) Ta có: 4n + 7 chia hết cho 3n + 1

=> (4n + 7) % (3n + 1) = 0

=> 4n + 7 = k(3n + 1), với k là một số nguyên

=> 4n + 7 = 3kn + k

=> (3k - 4)n = k - 7 => n = (k - 7)/(3k - 4), với 3k - 4 khác 0

Vậy n thuộc Z khi và chỉ khi 3k - 4 khác 0.

Phan Công Trực
Xem chi tiết
Edogawa Conan
5 tháng 11 2018 lúc 11:43

a) Ta có : 4n + 3 = 2(2n - 1) +5

Do 2n - 1 \(⋮\)2n - 1 nên 2(2n - 1) \(⋮\)2n - 1

Để 4n + 3 \(⋮\)2n - 1 thì 5 \(⋮\)2n - 1 => 2n - 1 \(\in\)Ư(5) = {1; 5}

Lập bảng :

2n - 1 1 5
  n 1 3

Vậy n = {5; 3} thì 4n + 3 chia hết cho 2n - 1

Edogawa Conan
5 tháng 11 2018 lúc 11:46

c) Ta có : n + 3 = (n - 1) + 4

Để (n - 1) + 4 \(⋮\)n - 1 thì 4 \(⋮\)n - 1 => n - 1 \(\in\)Ư(4) = {1; 2; 4}

Lập bảng :

 n - 1 1  2   4
   n 2 3 5

Vậy n = {2; 3; 5} thì n + 3 \(⋮\)n - 1

Mai Hồng Phương
Xem chi tiết
Lay Thành Đạt
1 tháng 2 2016 lúc 19:30

ai mình rồi mình lại cho

HOANG TRUNG KIEN
1 tháng 2 2016 lúc 19:31

bó tay voi bài toán này

Mai Hồng Phương
2 tháng 2 2016 lúc 17:33

giúp mình với

 

Nguyễn Phương Anh
Xem chi tiết
Đào Ngọc Mai
28 tháng 10 2020 lúc 22:05

a) \(6⋮\left(n-2\right)\Leftrightarrow\left(n-2\right)\inƯ\left(6\right)\)
Có \(Ư\left(6\right)=\left\{1;2;3;6\right\}\)
=>\(\left(n-2\right)\in\left\{1;2;3;6\right\}\)
Ta có bảng:

\(n-2\)\(1\)\(2\)\(3\)\(6\)
\(n\)\(3\)\(4\)\(5\)\(8\)

Vậy \(n\in\left\{3;4;5;8\right\}\)

Khách vãng lai đã xóa
Đào Ngọc Mai
28 tháng 10 2020 lúc 22:14

b) \(\left(n+3\right)⋮\left(n-1\right)\Leftrightarrow\frac{n+3}{n-1}\)là số tự nhiên
Có:\(\frac{n+3}{n-1}=\frac{n-1+4}{n-1}=\frac{n-1}{n-1}+\frac{4}{n-1}=1+\frac{4}{n-1}\)
Vì 1 là số tự nhiên nên:
Để \(\frac{n+3}{n-1}\)là số tự nhiên thì \(\frac{4}{n-1}\)phải là số tự nhiên.
Để \(\frac{4}{n-1}\)là số tự nhiên thì: \(4⋮\left(n-1\right)\)
                                            hay: \(\left(n-1\right)\inƯ\left(4\right)\)
Có \(Ư\left(4\right)=\left\{1;2;4\right\}\)
\(\Rightarrow\left(n-1\right)\in\left\{1;2;4\right\}\)
Ta có bảng:

\(n-1\)\(1\)\(2\)\(4\)
\(n\)\(2\)\(3\)\(5\)


Vậy \(n\in\left\{2;3;5\right\}\)

Khách vãng lai đã xóa
Đào Ngọc Mai
28 tháng 10 2020 lúc 22:30

c) \(\left(3n-5\right)⋮\left(n+1\right)\Leftrightarrow\frac{3n-5}{n+1}\) là số tự nhiên
Có \(\frac{3n-5}{n+1}=\frac{3n+3-3-5}{n+1}=\frac{3\left(n+1\right)-8}{n+1}=\frac{3\left(n+1\right)}{n+1}+\frac{-8}{n+1}=3+\frac{-8}{n+1}\)
Vì 3 là số tự nhiên nên:
Để \(\frac{3n-5}{n+1}\)là số tự nhiên thì \(\frac{-8}{n+1}\)phải là số tự nhiên.
Để \(\frac{-8}{n+1}\)là số tự nhiên thì \(\left(-8\right)⋮\left(n+1\right)\)
                                           hay: \(\left(n+1\right)\inƯ\left(-8\right)\)
Có \(Ư\left(-8\right)=\left\{1;2;4;8\right\}\)
\(\Rightarrow\left(n+1\right)\in\left\{1;2;4;8\right\}\)
Ta có bảng:

\(n+1\)\(1\)\(2\)\(4\)\(8\)
\(n\)\(0\)\(1\)\(3\)\(7\)


Vậy \(n\in\left\{0;1;3;7\right\}\)


 

Khách vãng lai đã xóa
Bùi Mai Anh
Xem chi tiết
FHhcy04
Xem chi tiết
nhi phan
Xem chi tiết
Nguyễn Thị Phương Thảo
Xem chi tiết
Hồ Thu Giang
15 tháng 7 2015 lúc 18:54

Đễ nhưng quá nhiều không đủ kiên nhẫn để làm. Bạn đăng lần lượt thôi.

Nguyễn Khánh Ngân
2 tháng 2 2019 lúc 13:54

cậu nên đăng lần lượt thôi thì bọn tớ mới làm

Phan Nguyễn Thùy Nhiên
Xem chi tiết

a) \(\frac{4n+3}{2n+1}=\frac{4n+2+1}{2n+1}=2+\frac{1}{2n+1}\)

Để có phép chia hết thì \(1⋮2n+1\Leftrightarrow2n+1\inƯ\left(1\right)=\left\{\pm1\right\}\)

b) \(\frac{3n-5}{4n+8}=\frac{3n+6-11}{4n+8}=\frac{3}{4}-\frac{11}{4n+8}\)

Để có phép chia hết thì \(11⋮4n+8\Leftrightarrow4n+8\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)

c) \(\frac{n+3}{n-1}=\frac{n-1+4}{n-1}=1+\frac{4}{n-1}\)

Để có phép chia hết thì \(4⋮n-1\Leftrightarrow n-1\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

d) \(\frac{3n+1}{11-n}=\frac{3n-33+34}{11-n}=-1+\frac{34}{11-n}\)

Để có phép chia hết thì \(34⋮11-n\Leftrightarrow11-n\inƯ\left(34\right)=\left\{\pm1;\pm2;\pm17;\pm34\right\}\)

Lập bảng xét giá trị cho từng trường hợp

Khách vãng lai đã xóa