Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Thu Hiền
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 2 2022 lúc 14:14

a: Xét ΔABE và ΔACD có

AB=AC

\(\widehat{BAE}\) chung

AE=AD
DO đó: ΔABE=ΔACD

Suy ra: BE=CD

b: Xét ΔABC có AD/AB=AE/AC
nên DE//BC

c: Xét ΔBDC và ΔCEB có 

DB=EC

DC=EB

BC chung

Do đó; ΔBDC=ΔCEB

Suy ra: \(\widehat{KBC}=\widehat{KCB}\)

hay ΔKBC cân tại K

Châu Phùng
Xem chi tiết
hương Nguyễn
Xem chi tiết
Nguyễn Ngọc Huy Toàn
7 tháng 3 2022 lúc 14:50

a.Xét tam giác ABE và tam giác ACD, có:

\(\widehat{A}:chung\)

AD = AE ( gt )

AB = AC ( ABC cân )

Vậy tam giác ABE = tam giác ACD ( c.g.c )

b.Xét tam giác DBC và tam giác ECB, có:

BD = CE ( AB=AC; AD=AE )

góc B = góc C ( ABC cân )

BC: cạnh chung 

Vậy tam giác DBC = tam giác ECB ( c.g.c )

=> góc DCB = góc EBC ( 2 góc tương ứng )

=> Tam giác KBC là tam giác cân và cân tại K

c.Xét tam giác AKB và tam giác AKC có:

AB=AC ( ABC cân )

góc ABK = góc ACK ( góc B = góc C; góc KBC = góc KCB )

AK: cạnh chung 

Vậy tam giác AKB = tam giác AKC ( c.g.c )

=> góc BAK = góc CAK ( 2 góc tương ứng )

Mà Tam giác ADE cân tại A ( AD=AE )

=> AK là đường cao 

=> AK vuông DE (1)

Mà Tam giác KBC cân tại K 

=> AK vuông với BC (2)

Từ (1) và (2) => DE//BC

d. Ta có: AK là đường cao ( cmt ) cũng là đường trung tuyến

Mà M là trung điểm BC 

=> A,K,M thẳng hàng

 

.tũn
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 12 2021 lúc 12:00

a: Xét ΔABE và ΔACD có

AB=AC

\(\stackrel\frown{A}\) chung

AE=AD

Do đó: ΔABE=ΔACD

Suy ra: BE=CD

phan ledung
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 1 2022 lúc 21:00

Đề sai rồi bạn

phan ledung
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 1 2022 lúc 13:01

Đề thiếu điều kiện rồi bạn

phan ledung
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 1 2022 lúc 20:57

Đề sai rồi bạn

tomhum555
Xem chi tiết
Cao Thúy Oanh
Xem chi tiết
Chi Chi
Xem chi tiết
Edogawa Conan
10 tháng 7 2019 lúc 10:35

A B C D E O H

Cm: a) Xét t/giác ABE và t/giác ACD

có: AB = AC (gt)

  \(\widehat{A}\) :chung

  AE = AD (gt)

=> t/giác ABE = t/giác ACD (c.g.c)

=> BE = CD (2 cạnh t/ứng)

b)Ta có: AD + DB = AB

  AE + EC = AC

mà AD = AE (gt) ; AB = AC (gt)

=> BD = EC

Ta lại có: \(\widehat{ADC}+\widehat{CDB}=180^0\) (kề bù)

          \(\widehat{AEB}+\widehat{BEC}=180^0\)(kề bù)

mà \(\widehat{ADC}=\widehat{AEB}\)(vì t/giác ABE = t/giác ACD)

=> \(\widehat{BDC}=\widehat{BEC}\)

Xét t/giác BOD và t/giác COE

có: \(\widehat{DBO}=\widehat{OCE}\) (vì t/giác ABE = t/giác ACD)

  BD = EC (cmt)

  \(\widehat{BDO}=\widehat{OEC}\) (cmt)

=> t/giác BOD = t/giác COE (g.c.g)

c) Xét t/giác ABO và t/giác ACO

có: AB = AC (gT)

  OB = OC (vì t/giác BOD = t/giác COE)

 AO  : chung

=> t/giác ABO = t/giác ACO (c.c.c)

=> \(\widehat{BAO}=\widehat{CAO}\) (2 góc t/ứng)

=> AO là tia p/giác của \(\widehat{A}\)

d) Xét t/giác ABH và t/giác ACH

có: AB = AC (gt)

 \(\widehat{BAH}=\widehat{CAH}\)(cmt)

 AH : chung

=> t/giác ABH = t/giác ACH (c.g.c)

=> \(\widehat{BHA}=\widehat{CHA}\) (2 góc t/ứng)

Mà \(\widehat{BHA}+\widehat{CHA}=180^0\) (kề bù)

=> \(\widehat{BHA}=\widehat{CHA}=90^0\) => AH \(\perp\)BC (Đpcm)