cho tam giác DEF vuông tại D và DF > DE, kẻ DH vuông góc với EF ( H thuoc canh EF) . goi M la trung diem cua EF.
a) CM \(\widebat{MDH}\)= \(\widebat{E}\)- \(\widebat{F}\)
b) CM EF - DE > DF - DH
ai nhanh cho 2 k. ai nhanh có thùng
Cho tam giác DEF vuông tại D và DF lớn hơn DE,kẻ DH vuông góc với EF (H thuộc cạnh EF) ,gọi M là trung điểm của EF a)CM góc MDH=góc E+góc F b)CM EF-DE lớn hơn DF-DH
a: góc MDH=90 độ-góc DMH
=90 độ-2*góc MDF
=90 độ-2*góc E
=góc F+góc E-2*góc E
=góc F-gócE
b: (EF+DH)^2-(DF+DE)^2
=EF^2+2*EF*DH+DH^2-DF^2-DE^2-2*DF*DE
=DH^2>0
=>EF+DH>DF+DE
=>EF-DE>DF-DH
cho tam giác DEF vuông tại D và DF > DE, DH vuông góc với ED ( H thuộc EF ) . M là trung điểm EF
a. CM: góc MDH = góc E - góc F
b. CM: EF - DE > DF - DH
a:
\(\widehat{HDE}+\widehat{E}=90^0\)(ΔHDE vuông tại H)
\(\widehat{E}+\widehat{F}=90^0\)(ΔEDF vuông tại D)
Do đó: \(\widehat{HDE}=\widehat{F}\)
ΔDEF vuông tại D
mà DM là đường trung tuyến
nên MD=MF
=>\(\widehat{MDF}=\widehat{MFD}=\widehat{F}\)
\(\widehat{EDH}+\widehat{MDH}+\widehat{FDM}=\widehat{EDF}=90^0\)
=>\(\widehat{F}+\widehat{MDH}+\widehat{F}=90^0\)
=>\(\widehat{MDH}+2\cdot\widehat{F}=\widehat{E}+\widehat{F}\)
=>\(\widehat{MDH}=\widehat{E}+\widehat{F}-2\cdot\widehat{F}=\widehat{E}-\widehat{F}\)
b:
Xét ΔDEF vuông tại D có DH là đường cao
nên \(DE\cdot DF=DH\cdot EF\)
ΔDEF vuông tại D
=>\(DE^2+DF^2=EF^2\)
\(\left(EF+DH\right)^2=EF^2+2\cdot EF\cdot DH+DH^2\)
\(=EF^2+2\cdot DE\cdot DF+DH^2\)
\(\left(DF+DE\right)^2=DF^2+2\cdot DF\cdot DE+DE^2\)
\(=\left(DF^2+DE^2\right)+2\cdot DF\cdot DE\)
\(=EF^2+2\cdot DH\cdot EF\)
\(\left(EF+DH\right)^2-\left(DF+DE\right)^2\)
\(=EF^2+2\cdot DH\cdot EF+DH^2-EF^2-2\cdot DH\cdot EF\)
\(=DH^2>0\)
=>EF+DH>DF+DE
=>EF-DE>DF-DH
Cho tam giác DEF vuông tại D và DF > DE, kẻ DH vuông góc với EF (H thuộc EF). Gọi M là trung điểm của EF. Chứng minh
a, Góc MDH = góc E - góc F
b, EF - DE > DF - DH
Cho tam giác DEF vuông tại D và DF>DE, kẻ DH vuông góc với EF. Gọi M là trung điểm của EF
a)Chứng minh MDH=E-F
b)Chứng minh EF-DE>DF-DH
1/Cho tam giac ABC co goc A=120 do.Cac tia phan giac BE, CF cua ABC va ACB cat nhau tai I (E,F lan luot thuoc cac canh AC,AB).Tren canh BC lay 2 diem M,N sao cho BIM=CIN=30 do.
a)Tinh so do cua goc MIN
b)Chung minh CE+BF<BC
2/Cho tam giac DEF vuong tai D va DF>DE, ke DH vuong goc voi EF (H thuoc EF). Goi M la trung diem cua EF.
a)Chung minh goc MDH=goc E-goc F
b)Chung minh EF-DE>DF-DH
cho tam giác cân DEF (DE=DF).Gọi N và M lần lượt là trung điểm của DE và DF,kẻ DH vuông góc với EF tại H a) CM HE=HF b) giả sử DE=DF=5cm,EF=8cm.Tính độ dài đoạn DH
a) Ta có: \(DN=\dfrac{DE}{2}\)(N là trung điểm của DE)
\(DM=\dfrac{DF}{2}\)(M là trung điểm của DF)
mà DE=DF(ΔDEF cân tại D)
nên DN=DM
Xét ΔDNH vuông tại H và ΔDMH vuông tại M có
DN=DM(cmt)
DH chung
Do đó: ΔDNH=ΔDMH(Cạnh huyền-cạnh góc vuông)
Suy ra: \(\widehat{NDH}=\widehat{MDH}\)(hai góc tương ứng)
hay \(\widehat{EDH}=\widehat{FDH}\)
Xét ΔEDH và ΔFDH có
DE=DF(ΔDEF cân tại D)
\(\widehat{EDH}=\widehat{FDH}\)(cmt)
DH chung
Do đó: ΔEDH=ΔFDH(c-g-c)
Suy ra: HE=HF(Hai cạnh tương ứng)
Cho tam giác DEF vuông tại D. Trên tia đối của DF lấy điểm M sao cho DM = DF a, cho DE= 9cm, DF = 12 cm, tính EF b, CM ∆DEM= ∆DEF c, kẻ DH vuông góc với ME, DK vuông góc với EF, cm ∆HEK cân d, CM HD // EF
a) Áp dụng định lí Pytago vào ΔDEF vuông tại D, ta được:
\(EF^2=DE^2+DF^2\)
\(\Leftrightarrow EF^2=9^2+12^2=225\)
hay EF=15(cm)
Vậy: EF=15cm
a) Xét tam giác EDF có: EF2 = DE2 + DF2 (đ/lí py-ta-go)
=> EF2 = 92 + 122
=> EF2 = 81 + 144 = 225
=> EF = 112,5 cm
b) Xét tam giác DEM và tam giác DEF có :
EDM = EDF = 1v
ED chung
DM = DF (gt)
=> tam giác DEM = tam giác DEF (c.g.c) hay (c/huyền+c/góc vuông)
Cho tam giác DEF cân tại D. Kẻ DH vuông góc với EF (H thuộc EF). Kẻ HM vuông góc với DE (M thuộc DE) và HN vuông góc với DF (N thuộc DF). Góc HDE = góc HDF. CM:
a) HM = HN.
b) Tam giác HME = tam giác HNF.
lưu ý hình ảnh chỉ mang t/c minh họa ; vui lòng k vẽ theo
xét \(\Delta DHM\)VÀ \(\Delta DHN\)
DH-CẠNH CHUNG
\(\widehat{HDM}=\widehat{HDN}\left(gt\right)\)
\(\widehat{DMH}=\widehat{DNH}=90^o\left(gt\right)\)
=> \(\Delta DHM=\Delta DHN\)
=>HM = HN.
b) xét tam giác DEF cân tại D
=> \(\widehat{DEF}=\widehat{DFE}\)(T/C TAM GIÁC CÂN )
=>\(\widehat{MEH}=\widehat{NFH}\)
XÉT \(\Delta MEH\)VÀ \(\Delta NFH\)
\(\widehat{EMH}=\widehat{FNH}=90^o\left(gt\right)\)
\(\widehat{MEH}=\widehat{NFH}\left(cmt\right)\)
\(HM=HN\left(cmt\right)\)
=> \(\Delta MEH=\Delta NFH\)
Cho tam giác DEF cân tại D. Kẻ DH vuông góc với EF (H thuộc EF). Kẻ HM vuông góc với DE (M thuộc DE) và HN vuông góc với DF (N thuộc DF). Góc HDE = góc HDF. CM:
a) HM = HN.
b) Tam giác HME = tam giác HNF.
a) Xét 2 tam giác vuông: \(\Delta MDH\)và \(\Delta NDH\)có:
\(\widehat{MDH}=\widehat{NDH}\left(gt\right)\)
\(HD\)cạnh chung
\(\Rightarrow\Delta MDH=\Delta NDH\left(ch-gn\right)\)
\(\Rightarrow HM=HN\)( 2 cạnh tương ứng)
b) Ta có: \(DE=DF\)( vì tam giác DEF cân tại D )
Hay \(DM+ME=DN+NF\)
mà \(DM=DN\)( 2 cạnh tương ưng của tam giác MDH và tam giác NDH )
\(\Rightarrow ME=NF\)
Xét \(\Delta HME\)và \(\Delta HNF\)có:
\(\widehat{HME}=\widehat{HNF}\left(=90^o\right)\)
\(ME=NF\left(cmt\right)\)
\(\widehat{MEH}=\widehat{NFH}\) ( vì tam giác DEF cân tại D)
\(\Rightarrow\Delta HME=\Delta HNF\left(g-c-g\right)\)
hok tốt!!