Cho \(x\in Z\) và \(B=x^4-4x^3-2x^2+12x+9\)
CMR B là bình phương của 1 số nguyên.
Giúp với!
Cho x là số nguyên . CMR:
B = x4 – 4x3 - 2x2 + 12x +9 là bình phương của một số nguyên
Bài 3: Cho x là số nguyên. CMR:
B=x^4-4x^3-2x^2+12x+9 là số bình phương nguyên
Bài 4: Cho x,y,z là số nguyên.CMR:
C=4x.(x+y).(x+y+z).(x+z)+y^2.z^2 là số chính phương
B3 : t chỉ m r á :3
B4 :
Ta có :
C= 4x ( x + y ) ( x + y + z ) ( y + z ) + y2x2
= 4x ( x + y + z ) ( x + y ) ( x + z ) + y2x2
= 4 ( x2 + xy + xz ) ( x2 + xy + xz + yz ) + y2x2
Đặt a = x2 + xy + xz và b= yz , ta có :
⇒ C = 4a( a + b ) + b2
= b2 + 4ab + 4a2
= ( b + a )2
⇒ C là số chính phương
Chúc mừng m đã ghi xong bài , nhớ tick cho t nhoa bff!
Cho x là số nguyên . CMR:
B = x4 – 4x3 - 2x2 + 12x +9 là bình phương của một số nguyên
\(B=x^2\left(x^2-2x-3\right)-2x\left(x^2-2x-3\right)-3\left(x^2-2x-3\right)\)
\(B=\left(x^2-2x-3\right)\left(x^2-2x-3\right)=\left(x^2-2x-3\right)^2\)=> DPCM
chưa hiểu hay sao hay không thèm xem nhỉ cho ý kiến xem nào
Cho x là số nguyên . CMR :
A = x4 - 4x3 - 2x2 + 12x + 9 là bình phương của 1 số nguyên .
Cho x là sô nguyên. Cmr B= x4 - 4x3 - 2x2 + 12x + 9 là bìh phương của 1 số nguyên
Cho x la số nguyên.cm rằng biểu thức
B=x4-4x3-2x2+12x+9 là bình phương của 1 số nguyên
\(B=x^4-3x^3-x^3+3x^2-5x^2+15x-3x+9\)
\(=\left(x-3\right)\left(x^3-x^2-5x-3\right)\)
\(=\left(x-3\right)\left(x^3-3x^2+2x^2-6x+x-3\right)\)
\(=\left(x-3\right)^2\left(x^2+2x+1\right)\)
\(=\left(x-3\right)^2\cdot\left(x+1\right)^2\) là bình phương của một số nguyên(đpcm)
Chứng minh biểu thức sau là bình phương của 1 số nguyên với mọi x nguyên:
a, A = (x+1)(x+2)(x+3)(x+4) + 1
b, B = x4 - 4x3 - 2x2 +12x + 9
a,A=(x+1)(x+2)(x+3)(x+4)+1
=[(x+1)(x+4)][(x+2)(x+3)]+1
=(x2+5x+4)(x2+5x+6)
đặt x2+5x+5=a ta có
A=(a-1)(a+1)+1
=a2-1+1=a2
thay a =x2+5x+5 ta có A=(x2+5x+5)2
vì x nguyên nên x2+5x+5 nguyên
vậy A là bình phương của 1 số nguyên với mọi x nguyên
b,B=x4-4x3-2x2+12x+9
=x4+x3-5x3-5x2+3x2+3x+9x+9
=x3(x+1)-5x2(x+1)+3x(x+1)+9(x+1)
=(x+1)(x3-5x2+3x+9)
=(x+1)(x3+x2-6x2-6x+9x+9)
=(x+1)[x2(x+1)-6x(x+1)+9(x+1)]
=(x+1)(x+1)(x2-6x+9)
=(x+1)2(x+3)2
vì x nguyên nên x+1 nguyên;x+3 nguyên
vậy B là bình phương củ một số nguyên với mọi x nguyên
Phân tích đa thức thành nhân tử
a) x4-4x3-2x2 + 12x+ 9 ( bình phương của một số nguyên )
b) 4x(x+y)(x+y+z)(x+z) +y2z2 ( phân tích thành số chính phương)
chứng tỏ rằng
\(A=x^4-4x^3-2x^2+12x+9\)là bình phương của 1 số nguyên (x thuộc Z)
Bài này có nhiều cách, có thể dùng đồng nhất hệ số để chứng minh số tìm được là số nguyên.
\(A=x^4-4x^3-2x^2+12x+9=x^4-2x^3-2x^3-3x^2-3x^2+4x^2+6x+6x+9\)
\(=x^4-2x^3-3x^2-2x^3+4x^2+6x-3x^2+6x+9=x^2\left(x^2-2x-3\right)-2x\left(x^2-2x-3\right)-3\left(x^2-2x-3\right)\)
\(\left(x^2-2x-3\right)\left(x^2-2x-3\right)=\left(x^2-2x-3\right)^2=\left(\left(x-3\right)\left(x+1\right)\right)^2\left(đpcm\right)\)