Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Anh Quân
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
Quang Nhat
Xem chi tiết
ST
12 tháng 7 2017 lúc 21:08

\(\left(x-y\right):\left(x+y\right):xy=1:7:24\)

\(\Rightarrow\frac{x-y}{1}=\frac{x+y}{7}=\frac{xy}{24}\) (1)

Áp dụng tính chất của dãy tỉ số bằng nhau đốt với hai tỉ số đầu ta có:

\(\frac{x-y}{1}=\frac{x+y}{7}=\frac{x-y+x+y}{1+7}=\frac{2x}{8}=\frac{x}{4}\)

Do đó \(\frac{x}{4}=\frac{xy}{24}\Rightarrow\frac{x}{xy}=\frac{4}{24}\Rightarrow\frac{1}{y}=\frac{1}{6}\Rightarrow y=6\)

Thay y = 6 vào (1) ta có:

\(\frac{x-6}{1}=\frac{x+6}{7}\)

=> 7(x - 6) = x + 6

=> 7x - 42 = x + 6

=> 7x - x = 6 + 42

=> 6x = 48

=> x = 8

Vậy x = 8, y = 6

Vũ Anh Quân
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
Nghĩa Lê Tuấn
Xem chi tiết
Lê gia Hân
Xem chi tiết
Cô Chủ Nhỏ
5 tháng 2 2017 lúc 10:22

Ta có: \(B=\left(1-\frac{z}{x}\right)\left(1-\frac{x}{y}\right)\left(1+\frac{y}{z}\right)=\frac{x-z}{x}.\frac{y-x}{y}.\frac{z+y}{z}\)

Từ: \(x-y-z=0\Rightarrow x-z=y;y-x=-z\)\(y+z=x\)

Suy ra: \(B=\frac{y}{x}.\frac{-z}{y}.\frac{x}{z}=-1\left(x;y;z\ne0\right)\)

Nguyễn Tường Thành
Xem chi tiết
Vũ Anh Quân
Xem chi tiết
Phương An
11 tháng 4 2017 lúc 10:58

x + y = 1

<=> (x + y)2 = 12

<=> x2 + y2 + 2xy = 1

<=> x2 + y2 = 1 - 2xy

Ta có:

\(\dfrac{x}{y^3-1}-\dfrac{y}{x^3-1}+\dfrac{2\left(x-y\right)}{x^2y^2+3}\)

= \(\dfrac{x\left(x^3-1\right)}{\left(y^3-1\right)\left(x^3-1\right)}-\dfrac{y\left(y^3-1\right)}{\left(y^3-1\right)\left(x^3-1\right)}+\dfrac{2\left(x-y\right)}{x^2y^2+3}\)

= \(\dfrac{x^4-x-y^4+y}{x^3y^3-y^3-x^3+1}+\dfrac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\dfrac{\left(x^2-y^2\right)\left(x^2+y^2\right)-\left(x-y\right)}{x^3y^3-\left(x+y\right)\left(x^2+y^2-xy\right)+1}+\dfrac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\dfrac{\left(x+y\right)\left(x-y\right)\left(x^2+y^2\right)-\left(x-y\right)}{x^3y^3-\left(1-2xy-xy\right)+1}+\dfrac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\dfrac{\left(x-y\right)\left(1-2xy-1\right)}{x^3y^3+3xy}+\dfrac{2\left(x-y\right)}{x^2y^2+3}\)

\(=\dfrac{-2xy\left(x-y\right)}{xy\left(x^2y^2+3\right)}+\dfrac{2\left(x-y\right)}{x^2y^2+3}\)

\(=-\dfrac{2\left(x-y\right)}{x^2y^2+3}+\dfrac{2\left(x-y\right)}{x^2y^2+3}\)

= 0 (đpcm)