so sánh :\(\sqrt{2015}-\sqrt{2016}\) và \(\sqrt{2016}-\sqrt{2017}\)
Không dùng máy tính, hãy so sánh \(\sqrt{2017}-\sqrt{2016}\) và \(\sqrt{2016}-\sqrt{2015}\)
\(\sqrt{2017}-\sqrt{2016}=\dfrac{1}{\sqrt{2017}+\sqrt{2016}}\)
\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)
2017>2015
=>căn 2017>căn 2015
=>\(\sqrt{2017}+\sqrt{2016}>\sqrt{2016}+\sqrt{2015}\)
=>\(\dfrac{1}{\sqrt{2017}+\sqrt{2016}}< \dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)
=>\(\sqrt{2017}-\sqrt{2016}< \sqrt{2016}-\sqrt{2015}\)
So sánh \(\sqrt{2015}+\sqrt{2018}\) và \(\sqrt{2016}+\sqrt{2017}\)
Ta có: \(\left(\sqrt{2015}+\sqrt{2018}\right)^2=4033+2\sqrt{2015.2018}\)
\(\left(\sqrt{2016}+\sqrt{2017}\right)^2=4033+2\sqrt{2016.2017}\)
\(2015.2018=2015.2017+2015=2017\left(2015+1\right)-2017+2015=2017.2016-2\)\(\Rightarrow2015.2018< 2016.2017\)
\(\Rightarrow4033+2\sqrt{2015.2018}< 4033+2\sqrt{2016.2017}\)
\(\Rightarrow\sqrt{2015}+\sqrt{2018}< \sqrt{2016}+\sqrt{2017}\left(đpcm\right)\)
Đặt \(A=\sqrt{2015}+\sqrt{2018}\Rightarrow A^{^2}=4033+2\sqrt{2015.2018}\)
\(B=\sqrt{2016}+\sqrt{2017}\Rightarrow B^{^2}=4033+2\sqrt{2016.2017}\)
Ta có: 2015.2018 = 2015.2017 + 2015
2016.2017 = 2015.2017 + 2017
Dễ dàng thấy được 2015.2018 < 2016.2017 => A2 < B2
=> A < B
Để phần so sánh chặt chẽ hơn, bạn có thể dùng cách này.
So sánh:
\(\sqrt{2017}-\sqrt{2016}\) và \(\sqrt{2016}-\sqrt{2015}\)
Đặt x=\(\frac{1}{\sqrt{2017}-\sqrt{2016}}\), y=\(\frac{1}{\sqrt{2016}-\sqrt{2015}}\)
x=\(\frac{\sqrt{2017}+\sqrt{2016}}{\left(\sqrt{2017}-\sqrt{2016}\right)\left(\sqrt{2017}+\sqrt{2016}\right)}\)= \(\sqrt{2017}+\sqrt{2016}\)
Tương tự, y=\(\sqrt{2016}+\sqrt{2015}\)
So sánh: x>y suy ra \(\sqrt{2017}-\sqrt{2016}< \sqrt{2016}-\sqrt{2015}\)
so sánh
\(\sqrt{2017}-\sqrt{2016}\) va \(\sqrt{2016}-\sqrt{2015}\)
So sánh(không dùng bảng số hay máy tính cầm tay)
a)\(\dfrac{1}{7}\sqrt{51}\) với \(\dfrac{1}{9}\sqrt{150}\)
b)\(\sqrt{2017}-\sqrt{2016}\) với \(\sqrt{2016}-\sqrt{2015}\)
b: \(\sqrt{2017}-\sqrt{2016}=\dfrac{1}{\sqrt{2016}+\sqrt{2017}}\)
\(\sqrt{2016}-\sqrt{2015}=\dfrac{1}{\sqrt{2016}+\sqrt{2015}}\)
mà \(\sqrt{2016}+\sqrt{2017}< \sqrt{2016}+\sqrt{2015}\)
nên \(\sqrt{2017}-\sqrt{2016}>\sqrt{2016}-\sqrt{2015}\)
So sánh \(\sqrt{2018}-\sqrt{2017}\)và \(\sqrt{2016}-\sqrt{2015}\)
Cho A=\(\sqrt{2015}+\sqrt{2016}+\sqrt{2017}\)và B=\(\sqrt{2012}+\sqrt{2014}+\sqrt{2022}\)So sánh A và B
so sánh \(\sqrt{2015}-\sqrt{2014}\) và \(\sqrt{2016}-\sqrt{2015}\)
Ta có: \(\sqrt{2015}-\sqrt{2014}=\dfrac{2015-2014}{\sqrt{2015}+\sqrt{2014}}>\dfrac{2016-2015}{\sqrt{2016}+\sqrt{2015}}=\sqrt{2016}-\sqrt{2015}\)
Ta có: √2015−√2014=2015−2014√2015+√2014>2016−2015√2016+√2015=√2016−√2015
A=\(\sqrt{2018}-\sqrt{2017}\) và B= \(\sqrt{2016}-\sqrt{2015}\)
So sánh A và B
A=\(\frac{1}{\sqrt{2018}+\sqrt{2017}}\)
B=\(\frac{1}{\sqrt{2016}+\sqrt{2015}}\)
=> A<B