nguyên hàm: \(\int\dfrac{x^3+x^2}{x^2+6x+5}dx\)
Tính nguyên hàm của:
1, \(\int\)\(\dfrac{x^3}{x-2}dx\)
2, \(\int\)\(\dfrac{dx}{x\sqrt{x^2+1}}\)
3, \(\int\)\((\dfrac{5}{x}+\sqrt{x^3})dx\)
4, \(\int\)\(\dfrac{x\sqrt{x}+\sqrt{x}}{x^2}dx\)
5, \(\int\)\(\dfrac{dx}{\sqrt{1-x^2}}\)
a. \(\int\dfrac{x^3}{x-2}dx=\int\left(x^2+2x+4+\dfrac{8}{x-2}\right)dx=\dfrac{1}{3}x^3+x^2+4x+8ln\left|x-2\right|+C\)
b. \(\int\dfrac{dx}{x\sqrt{x^2+1}}=\int\dfrac{xdx}{x^2\sqrt{x^2+1}}\)
Đặt \(\sqrt{x^2+1}=u\Rightarrow x^2=u^2-1\Rightarrow xdx=udu\)
\(I=\int\dfrac{udu}{\left(u^2-1\right)u}=\int\dfrac{du}{u^2-1}=\dfrac{1}{2}\int\left(\dfrac{1}{u-1}-\dfrac{1}{u+1}\right)du=\dfrac{1}{2}ln\left|\dfrac{u-1}{u+1}\right|+C\)
\(=\dfrac{1}{2}ln\left|\dfrac{\sqrt{x^2+1}-1}{\sqrt{x^2+1}+1}\right|+C\)
c. \(\int\left(\dfrac{5}{x}+\sqrt{x^3}\right)dx=\int\left(\dfrac{5}{x}+x^{\dfrac{3}{2}}\right)dx=5ln\left|x\right|+\dfrac{2}{5}\sqrt{x^5}+C\)
d. \(\int\dfrac{x\sqrt{x}+\sqrt{x}}{x^2}dx=\int\left(x^{-\dfrac{1}{2}}+x^{-\dfrac{3}{2}}\right)dx=2\sqrt{x}-\dfrac{1}{2\sqrt{x}}+C\)
e. \(\int\dfrac{dx}{\sqrt{1-x^2}}=arcsin\left(x\right)+C\)
Tìm nguyên hàm của các hàm số sau:
a) \(\int\left(6x-\dfrac{1}{sin^2x}+1\right)dx\)
b) \(\int\dfrac{x^3+2x^2-1}{x^2}dx\)
Tính nguyên hàm của các hàm sau:
1. \(\int sin^2\)\(\dfrac{x}{2}\) dx
2. \(\int cos^23x\) dx
3. \(\int4cos^2\dfrac{x}{2}\) dx
\(\int sin^2\dfrac{x}{2}dx=\int\left(\dfrac{1}{2}-\dfrac{1}{2}cosx\right)dx=\dfrac{1}{2}x-\dfrac{1}{2}sinx+C\)
\(\int cos^23xdx=\int\left(\dfrac{1}{2}+\dfrac{1}{2}cos6x\right)dx=\dfrac{1}{2}x+\dfrac{1}{12}sin6x+C\)
\(\int4cos^2\dfrac{x}{2}dx=\int\left(2+2cosx\right)dx=2x+2sinx+C\)
Tìm nguyên hàm của hàm số : \(\int\dfrac{x\ln\left(x+\sqrt{x^2+1}\right)}{\sqrt{x^2+1}}dx\)
Lời giải:
Đặt \(u=\ln (x+\sqrt{x^2+1}); dv=\frac{1}{\sqrt{x^2+1}}dx\)
\(\Rightarrow du=\frac{dx}{\sqrt{x^2+1}}; v=\int \frac{x}{\sqrt{x^2+1}}dx=\frac{1}{2}\int \frac{d(x^2+1)}{\sqrt{x^2+1}}=\sqrt{x^2+1}\)
\(\Rightarrow \int \frac{x\ln (x+\sqrt{x^2+1})}{\sqrt{x^2+1}}dx=\int udv=uv-vdu=\sqrt{x^2+1}\ln (x+\sqrt{x^2+1})-\int dx\)
\(=\sqrt{x^2+1}\ln (x+\sqrt{x^2+1})-x+C\)
Tính nguyên hàm \(\int\dfrac{1}{x^3+x}dx\)
\(\int\dfrac{dx}{x^3+x}=\int\dfrac{dx}{x\left(x^2+1\right)}\)
\(t=x^2+1\Rightarrow dt=2xdx\Rightarrow\int\dfrac{dx}{x\left(x^2+1\right)}=\int\dfrac{dt}{2x^2t}=\dfrac{1}{2}\int\dfrac{dt}{\left(t-1\right).t}\)
\(\dfrac{1}{\left(t-1\right).t}=\dfrac{1}{t-1}-\dfrac{1}{t}\)
\(\Rightarrow\int\dfrac{dt}{\left(t-1\right)t}=\int\left(\dfrac{1}{t-1}-\dfrac{1}{t}\right)dt=\int\dfrac{dt}{t-1}-\int\dfrac{dt}{t}=ln\left|t-1\right|-ln\left|t\right|=ln\left|x^2\right|-ln\left|x^2+1\right|\)
\(\int\dfrac{dx}{x^2-6x+5}\)
\(\int\dfrac{dx}{x^2-6x+5}=\int\dfrac{dx}{\left(x-1\right)\left(x-5\right)}=\dfrac{1}{4}.ln\left|\dfrac{x-5}{x-1}\right|+C\).
\(\int tan\left(x\right)-ln^{15}\left(cos\left(x\right)\right)dx\)
\(\int\dfrac{x^4+x^2+1}{2x^3+5x^2-7}dx\)
tính nguyên hàm , ai giúp mình 2 bài này với hoặc 1 bài thôi cũng đc ạ , xin cảm ơn nhiều.
Tính các nguyên hàm sau :
a) \(\int x\left(3-x\right)^5dx\)
b) \(\int\left(2^x-3^x\right)^2dx\)
c) \(\int x\sqrt{2-5x}dx\)
d) \(\int\dfrac{\ln\left(\cos x\right)}{\cos^2x}dx\)
e) \(\int\dfrac{x}{\sin^2x}dx\)
\(\int\dfrac{x+1}{\left(x-2\right)\left(x+3\right)}dx\)
h) \(\int\dfrac{1}{1-\sqrt{x}}dx\)
i) \(\int\sin3x\cos2xdx\)
k) \(\int\dfrac{\sin^3x}{\cos^2x}dx\)
l) \(\int\dfrac{\sin x\cos x}{\sqrt{a^2\sin^2x+b^2\cos^2x}}dx\) (\(a^2\ne b^2\))
Biết f(x)=x^2 là một nguyên hàm của hàm số f(x) trên R giá trị của \(\int\limits^2_1\left[2+f\left(x\right)\right]dx\) bằng
A. 5
B. 3
C. \(\dfrac{13}{3}\)
D. \(\dfrac{7}{3}\)
Ta có: 2 ∫ 1 [2 + f(x)] dx = 2 ∫ 1 [2 + x^2] dx = 2 [2x + (1/3)x^3]1→1 = 2 [(2+1/3) - (2+1/3)] = 0 Vậy đáp án là D. 7/3.
Tìm các nguyên hàm sau bằng phương pháp lấy nguyên hàm từng phần
a) \(I_1=\int x^22^xdx\)
b) \(I_2=\int x^2e^{3x}dx\)
c) \(I_3=\int e^{3x}\left(x^2-6x+2\right)dx\)
a) Đặt \(u=x^2\); \(dv=2^xdx\). Khi đó \(du=2xdx\) ; \(v=\int2^xdx=\frac{2^x}{\ln2}\) và \(I_1=x^2\frac{2^x}{\ln2}-\frac{2}{\ln2}\int x2^xdx\)
Lại áp dụng phép lấy nguyên hàm từng phần cho tích phân ở vế phải bằng cách đặt :
\(u=x\) ; \(dv=2^xdx\) và thu được \(du=dx\) ; \(v=\frac{2^x}{\ln2}\) Do đó
\(I_1=x^2\frac{2^x}{\ln_{ }2}-\frac{2}{\ln2}\left[x\frac{2^x}{\ln2}-\frac{1}{\ln2}\int2^xdx\right]\)
= \(x^2\frac{2^x}{\ln_{ }2}-\frac{2}{\ln2}\left[x\frac{2^x}{\ln2}-\frac{2^x}{\ln^22}\right]+C\) = \(\left(x^2-\frac{2}{\ln2}x+\frac{2}{\ln^22}\right)\frac{2^x}{\ln2}+C\)
b) Đặt \(u=x^2\); \(dv=e^{3x}dx\)
Khi đó \(du=2xdx\) ; \(v=\int e^{3x}dx=\frac{1}{3}\int e^{3x}d\left(3x\right)=\frac{1}{3}e^{ex}\)
Do đó:
\(I_2=\frac{x^2}{3}e^{3x}-\frac{1}{3}\int xe^{3x}dx\) (a)
Lại áp dụng phép lấy nguyên hàm từng phần cho nguyên hàm ở vế phải. Ta đặt \(u=x\) ; \(dv=e^{3x}dx\)
Khi đó \(du=dx\) ; \(v=\int e^{3x}dx=\frac{1}{3}e^{3x}\) và
\(\int xe^{ex}dx=\frac{x}{3}e^{3x}-\frac{1}{3}\int e^{3x}dx=\frac{x}{3}e^{3x}-\frac{1}{9}e^{3x}\)
Thế kết quả thu được vào (a) ta có :
\(I_2=\frac{x^2}{3}e^{3x}-\frac{2}{3}\left(\frac{x}{3}e^{3x}-\frac{1}{9}e^{3x}\right)+C=\frac{e^{3x}}{27}\left(9x^2-6x+2\right)+C\)
c) Đặt \(u=x^2-6x+2\); \(dv=e^{3x}dx\)
Khi đó \(du=\left(2x-6\right)dx\) ; \(v=\int e^{3x}dx=\frac{1}{3}e^{3x}\)
Do đó :
\(I_3=\frac{e^{3x}}{3}\left(x^2-6x+2\right)-\frac{2}{3}\int e^{3x}\left(x-3\right)dx\)
Đặt \(\int e^{3x}\left(x-3\right)dx=I'_3\)
Ta có \(\frac{e^{3x}}{3}\left(x^2-6x+2\right)-\frac{2}{3}I'_3\)(a)
Ta lại áp dụng phương pháp lấy nguyên hàm từng phần cho \(\int e^{3x}\left(x-3\right)dx\).
Đặt \(u=x-3\) ; \(dv=e^{3x}dx\)
Khi đó \(du=dx\); \(v=\int e^{3x}dx=\frac{e^{3x}}{3}\)
Vậy \(I'_3=\frac{e^{3x}}{3}\left(x-3\right)-\frac{1}{3}\int e^{3x}dx=\frac{e^{3x}}{3}\left(x-3\right)-\frac{1}{9}e^{3x}\)
Thế \(I'_3\) vào (a) ta thu được
\(I_3=e^{3x}\left(\frac{x^2}{3}-\frac{20}{9}x+\frac{38}{27}\right)+C\)