\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
giải pt:
a,\(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
b,\(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
giải pt :
a,\(\left(6x-5\right)\sqrt{x+1}-\left(6x+2\right)\sqrt{x-1}+4\sqrt{x^2-1}=4x-3\)
b, \(\left(9x-2\right)\sqrt{3x-1}+\left(10-9x\right)\sqrt{3-3x}-4\sqrt{-9x^2+12x-3}=4\)
c, \(\left(13-4x\right)\sqrt{2x-3}+\left(4x-3\right)\sqrt{5-2x}=2+8\sqrt{-4x^2+16x-15}\)
Tìm x biết : (đề không sai)
1.\(-4x\left(x-7\right)+4x\left(x^2-5\right)\) \(=28x^2-13\)
2.\(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x-7\right)\)= \(\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)
3.\(\left(-4x^2-3\right)\left(2x+5\right)-\left(8x-3\right)\) \(\left(-x^2+2\right)=-5x^2\left(x-6\right)-3x^2-4\)
4.\(\left(x-7\right)\left(x+5\right)-\left(x-3\right)\left(x-2\right)\) \(=15x^2\left(x+1\right)-\left(3x^2-1\right)\) \(\left(5x^2-2\right)-21x^2\)
5.\(\left(x-3\right)\left(-x+10\right)+\left(x-8\right)\left(x+3\right)\) \(=\left(5x^2-1\right)\left(x+3\right)-5x^3-15x^2\)
6.\(\left(-2x^2+5\right)\left(-x+3\right)-x^2\left(2x-6\right)\) \(=\left(x-1\right)\left(x+1\right)-\left(x-2\right)\left(x+4\right)\)
1,\(\dfrac{5\left(x-1\right)+2}{6}\)-\(\dfrac{7x-1}{4x}\)=\(\dfrac{2\left(2x+1\right)}{7}\)-5
2,\(\dfrac{3\left(x-3\right)}{4}\)+\(\dfrac{4x-10,5}{10}\)=\(\dfrac{3 \left(x+1\right)}{5}\)+6
3,\(\dfrac{2\left(3x+1\right)+1}{4}\)-5=\(\dfrac{2\left(3x-1\right)}{5}\)-\(\dfrac{3x+2}{10}\)
Diễn giải ra cho em với ạ!Em cảm ơn
1, bạn xem lại đề
2, 15(x-3) + 8x-21 = 12(x+1) +120
<=> 23x - 66 = 12x + 132
<=> 11x = 198 <=> x = 198/11
3, 10(3x+1) + 5 - 100 = 8(3x-1) - 6x - 4
<=> 30x + 10 - 95 = 18x -12
<=> 12x = 73 <=> x = 73/12
Bài 3: Tìm x biết:
1, \(4x^2-36=0\)
2, \(\left(x-1\right)^2+x\left(4-x\right)=11\)
3, \(\left(x-5\right)^2-x.\left(x+2\right)=5\)
4, \(x\left(x+4\right)-x^2-6x=10\)
1: Ta có: \(4x^2-36=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
2: Ta có: \(\left(x-1\right)^2+x\left(4-x\right)=11\)
\(\Leftrightarrow x^2-2x+1+4x-x^2=11\)
\(\Leftrightarrow2x=10\)
hay x=5
Tìm x biết :(đề không sai )
1.\(-4x\left(x-7\right)+4x\left(x^2-5\right)\) \(=28x^2-13\)
2.\(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)\) \(=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)
3.\(\left(-4x^2-3\right)\left(2x+5\right)\) \(-\left(8x-3\right)\left(-x^2+2\right)\) \(-5x\left(x-6\right)-3x^2-4\)
4.\(\left(x-7\right)\left(x+5\right)-\left(x-3\right)\left(x-2\right)\) \(=15x^2\left(x+1\right)-\left(3x^2-1\right)\) \(\left(5x^2-2\right)-21x^2\)
5.\(\left(x-3\right)\left(-x+10\right)+\left(x-8\right)\left(x+3\right)\)\(=\left(5x^2-1\right)\left(x+3\right)-5x^3-15x^2\)
6.\(\left(-2x^2+5\right)\left(-x+3\right)-x^2\left(2x-6\right)\) \(=\left(x-1\right)\left(x+1\right)-\left(x-2\right)\left(x+4\right)\)
1, \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)
\(\Leftrightarrow-4x^2+28x+4x^3-20x=28x^2-13\)
\(\Leftrightarrow-32x^2+8x+4x^3-13=0\)( vô nghiệm )
2, \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)
\(\Leftrightarrow12x^3-7x^2-10x-7x^2-35x=-2x^2+11x-12+12x^3+2x^2\)
\(\Leftrightarrow12x^3-14x^2-45x=11x-12+12x^3\)
\(\Leftrightarrow-14x^2-56x-12=0\)( vô nghiệm )
Mình làm riêng ra nhá , chứ nhiều quá nên thông cảm cho mình :))
1. \(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)
=> \(-4x^2+28x+4x^3-20x=28x^2-13\)
=> \(-4x^2+4x^3+\left(28x-20x\right)=28x^2-13\)
=> \(-4x^2+4x^3+8x-28x^2+13=0\)
=> \(\left(-4x^2-28x^2\right)+4x^3+8x+13=0\)
=> \(-32x^2+4x^3+8x+13=0\)
=> vô nghiệm
2. \(\left(4x^2-5x\right)\left(3x+2\right)-7x\left(x+5\right)=\left(-4+x\right)\left(-2x+3\right)+12x^3+2x^2\)
=> \(4x^2\left(3x+2\right)-5x\left(3x+2\right)-7x\left(x+5\right)=-4\left(-2x+3\right)+x\left(-2x+3\right)+12x^3+2x^2\)
=> \(12x^3+8x^2-15x^2-10x-7x^2-35x=8x-12-2x^2+3x+12x^3+2x^2\)
=> \(12x^3+8x^2-15x^2-10x-7x^2-35x-8x+12+2x^2-3x-12x^3-2x^2=0\)
=> \(\left(12x^3-12x^3\right)+\left(8x^2-15x^2-7x^2+2x^2-2x^2\right)+\left(-10x-35x-8x-3x\right)+12=0\)
=> \(-14x^2-56x+12=0\)
=> .... tự tìm
Câu c dấu bằng chỗ nào ?
\(-4x\left(x-7\right)+4x\left(x^2-5\right)=28x^2-13\)
\(< =>-4x^2+28x+4x^3-20x=28x^2-13\)
\(< =>4x^3-\left(4x^2+28x^2\right)+8x+13=0\)
\(< =>4x^3-32x^2+8x+13=0\)
do cái này nghiệm màu mè nên mình sẽ làm cách khá khó hiểu
\(< =>x^3-7x^2+2x+\frac{13}{4}=0\)
Đặt \(x=y+\frac{7}{3}\)khi đó phương trình trở thành
\(\left(y+\frac{7}{3}\right)^3-7\left(y+\frac{7}{3}\right)^2+2\left(y+\frac{7}{3}\right)+\frac{13}{4}=0\)
\(< =>y^3+3y^2\frac{7}{3}+3y\frac{49}{9}-7\left(y^2+\frac{14y}{3}+\frac{49}{9}\right)+2y+\frac{14}{3}+\frac{13}{4}=0\)
\(< =>y^3+7y^2+\frac{49y}{3}-7y^2-\frac{98y}{3}-\frac{343}{9}+2y+\frac{95}{12}=0\)
\(< =>y^3-\frac{43y}{3}-\frac{1087}{36}=0\)
Đặt \(y=u+v\)sao cho \(uv=\frac{43}{9}\)khi đó pt trở thành
\(\left(u+v\right)^3-\frac{43\left(u+v\right)}{3}-\frac{1087}{36}=0\)
\(< =>u^3+v^3+3uv\left(u+v\right)-\left(u+v\right).\frac{43}{3}-\frac{1087}{36}=0\)
\(< =>u^3+v^3+\left(u+v\right)\left(3uv-\frac{43}{3}\right)-\frac{1087}{36}=0\)
\(< =>u^3+v^3=\frac{1087}{36}\)(*) (do \(uv=\frac{43}{9}\Leftrightarrow3uv-\frac{43}{3}=0\))
Ta có \(uv=\frac{43}{9}\Leftrightarrow u^3v^3=\frac{79507}{729}\)(**)
Từ (*) và (*) Suy ra được \(\hept{\begin{cases}u^3+v^3=\frac{1087}{36}\\u^3v^3=\frac{79507}{729}\end{cases}}\)
đến đây dễ rồi nhé ^^
a) \(\left(x^2-16\right)\left(\dfrac{x}{4}-\dfrac{4x+5}{3}\right)=0\)
b) \(\left(4x-1\right)\left(x+5\right)=x^2-25\)
c) \(x\left(x+3\right)^3-\dfrac{x}{4}\left(x+3\right)=0\)
a) Ta có: \(\left(x^2-16\right)\left(\dfrac{x}{4}-\dfrac{4x+5}{3}\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\left(\dfrac{3x-16x-20}{12}\right)=0\)
\(\Leftrightarrow\left(x-4\right)\left(x+4\right)\cdot\left(-13x-20\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-4=0\\x+4=0\\-13x-20=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\-13x=20\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=-4\\x=\dfrac{-20}{13}\end{matrix}\right.\)
Vậy: \(x\in\left\{4;-4;\dfrac{-20}{13}\right\}\)
b) Ta có: \(\left(4x-1\right)\left(x+5\right)=x^2-25\)
\(\Leftrightarrow\left(4x-1\right)\left(x+5\right)-\left(x^2-25\right)=0\)
\(\Leftrightarrow\left(4x-1\right)\left(x+5\right)-\left(x+5\right)\left(x-5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(4x-1-x+5\right)=0\)
\(\Leftrightarrow\left(x+5\right)\left(3x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\3x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\3x=-4\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-\dfrac{4}{3}\end{matrix}\right.\)
Vậy: \(x\in\left\{-5;\dfrac{-4}{3}\right\}\)
c) Ta có: \(x\left(x+3\right)^3-\dfrac{x}{4}\cdot\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\cdot\left[x\left(x+3\right)^2-\dfrac{1}{4}x\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left[x\left(x^2+6x+9\right)-\dfrac{1}{4}x\right]=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^3+6x^2+9x-\dfrac{1}{4}x\right)=0\)
\(\Leftrightarrow\left(x+3\right)\cdot x\cdot\left(x^2+6x+\dfrac{35}{4}\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x^2+6x+9-\dfrac{1}{4}\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left[\left(x+3\right)^2-\dfrac{1}{4}\right]=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x+3-\dfrac{1}{2}\right)\left(x+3+\dfrac{1}{2}\right)=0\)
\(\Leftrightarrow x\left(x+3\right)\left(x+\dfrac{5}{2}\right)\left(x+\dfrac{7}{2}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x+\dfrac{5}{2}=0\\x+\dfrac{7}{2}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=-\dfrac{5}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
Vậy: \(x\in\left\{0;-3;-\dfrac{5}{2};-\dfrac{7}{2}\right\}\)
Tìm x, biết:\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
(4x - 3) - (x + 5) = 3(10 - x)
<=> 4x - 3 - x - 5 = 30 - 3x
<=> 4x -x + 3x = 3 + 5 + 30
<=> 6x = 38
<=> x = 19/3
\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
\(4x-3-x-5=30-3x\)
\(3x-8=30-3x\)
\(3x+3x=30+8\)
\(6x=38\)
\(x=\frac{19}{3}\)
\(\left(4x-3\right)-\left(x+5\right)=3\left(10-x\right)\)
\(\Leftrightarrow4x-3-x-5=30-3x\)
\(\Leftrightarrow4x-x+3x=30+3+5\)
\(\Leftrightarrow6x=38\)
\(\Leftrightarrow x=\frac{38}{6}\)
\(\Leftrightarrow x=\frac{19}{3}\)
Tim x
a) \(\left(4x+3\right).\left(4x-3\right)-\left(4x-5\right)^2=46\)
b) \(\left(x+1\right)^3+2x-\left(x-1\right)^3-3.\left[\left(x+1\right)^2+\left(x-1\right)^2\right]+5=0\)
a) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=46\)
\(\Leftrightarrow16x^2-9-16x^2+40x-25=46\)
\(\Leftrightarrow40x=46+9+25=80\)
\(\Leftrightarrow x=2\)
b) \(\left(x+1\right)^3+2x-\left(x-1\right)^3-3\left[\left(x+1\right)^2+\left(x-1\right)^2\right]+5=0\)
\(=x^3+3x^2+3x+1+2x-x^3+3x^2-3x+1-3\left(x^2+2x+1+x^2-2x+1\right)+5=0\)
\(=6x^2+2x+2-3\left(2x^2+2\right)+5=0\)
\(\Leftrightarrow6x^2+2x+2-6x^2-6+5=0\)
\(\Leftrightarrow2x=-2+6-5=-1\)
\(\Leftrightarrow x=\frac{1}{2}\)