Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Vũ Mai Anh
Xem chi tiết
Thiên An Nguyễn
Xem chi tiết
coldly queen
24 tháng 3 2019 lúc 13:06

​​fddfssdfdsfdssssssssssssssffffffffffffffffffsssssssssssssssssssfsssssssssssssssssssssssfffffffffffffff
bin
24 tháng 3 2019 lúc 13:11

Ez lắm =)

Bài 1:

Với mọi gt \(x,y\in Q\) ta luôn có: 

\(x\le\left|x\right|\) và \(-x\le\left|x\right|\) 

\(y\le\left|y\right|\) và \(-y\le\left|y\right|\Rightarrow x+y\le\left|x\right|+\left|y\right|\) và \(-x-y\le\left|x\right|+\left|y\right|\)

Hay: \(x+y\ge-\left(\left|x\right|+\left|y\right|\right)\)

Do đó: \(-\left(\left|x\right|+\left|y\right|\right)\le x+y\le\left|x\right|+\left|y\right|\)

Vậy: \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)

Dấu "=" xảy ra khi: \(xy\ge0\)

bin
24 tháng 3 2019 lúc 13:22

Bài 3: 

Ta có: \(\frac{x}{a}=\frac{y}{b}=\frac{z}{c}=\frac{x+y+z}{a+b+c}=x+y+z\) (vì a + b + c = 1)

Do đó: \(\left(x+y+z\right)^2=\frac{x^2}{a^2}=\frac{y^2}{b^2}=\frac{z^2}{c^2}=\frac{x^2+y^2+z^2}{a^2+b^2+c^2}=x^2+y^2+z^2\) (vì a2 + b2 + c2 = 1)

Vậy: (x + y + z)2 = x2 + y2 + z2

nguyễn phương thảo
Xem chi tiết
OoO Pipy OoO
8 tháng 8 2016 lúc 17:32

\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

n lẻ  

=> n - 1 và n + 1 chẵn

Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8

=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)

nguyễn phương thảo
8 tháng 8 2016 lúc 22:20

ai giải giúp mình bài 2 và bài 3 với

Nguyễn Thị Ngọc Linh
Xem chi tiết
Nguyễn Anh Quân
21 tháng 1 2018 lúc 20:30

Bài 1 : 

Có : P = n^2+n+2 = n.(n+1)+2

Ta thấy n và n+1 là 2 số tự nhiên liên tiếp

=> n.(n+1) có tận cùng là : 0 hoặc 2 hoặc 6

=> P có tận cùng là : 2 hoặc 4 hoặc 8 

=> P ko chia hết cho 5

=> ĐPCM

Tk mk nha

Nguyễn Anh Quân
21 tháng 1 2018 lúc 20:26

Bài 2 : 

Xét : A = a/3 + a^2/2 + a^3/6 = 2a^2+3a+a^3/6 = a.(a^2+2a+3)/6

= a.(a+1).(a+2)/6

Ta thấy a;a+1;a+2 là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2 và 1 số chia hết cho 3

=> a.(a+1).(a+2) chia hết cho 2 và 3

=> a.(a+1).(a+2) chia hết cho 6

=> A thuộc Z

Tk mk nha

Trần Hoàng Phương Anh
Xem chi tiết
Duong Thanh Minh
24 tháng 4 2017 lúc 17:28

de nay kho nhi

thánh yasuo lmht
3 tháng 5 2017 lúc 18:25

Bài 2 a:

\(A=n^3+3n^2+2n=n^3+n^2+2n^2+2n=n^2\left(n+1\right)+2n\left(n+1\right)=\left(n^2+2n\right)\left(n+1\right)=n\left(n+1\right)\left(n+2\right)\)

Mà tích 3 số nguyên liên tiếp chia hết cho 3,  suy ra A chia hết cho 3

thánh yasuo lmht
3 tháng 5 2017 lúc 19:02

Bài 2 b:

A chia hết cho 15, mà A chia hết cho 3 nên ta chỉ cần tìm n sao cho A chia hết cho 5.

Suy ra  \(n⋮5,n+1⋮5,n+2⋮5\)

Mà n<10 nên n=3, 4, 5, 8, 9

Hồ Nguyễn Ngọc Trang
Xem chi tiết
Nguyệt
21 tháng 2 2019 lúc 20:22

\(\text{Đặt }\frac{m}{a}=\frac{n}{b}=\frac{k}{c}=l,\text{ ta có: }\)

\(m=al,n=bl,k=cl\)

\(A=\frac{alx+bly+clz}{ax+by+cz}=\frac{l\left(ax+by+cz\right)}{ax+by+cz}=l\)

Vậy..

\(2,2.\left(x+y\right)=5.\left(y+z\right)=3.\left(x+z\right)\Leftrightarrow\frac{x+y}{5}=\frac{y+z}{2},\frac{y+z}{3}=\frac{x+z}{5}\)

\(\Leftrightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{x+z}{10}=\frac{y+z-x-z}{6-10}=\frac{y-x}{-4}=\frac{x-y}{4}=\frac{x+y-x-z}{15-10}=\frac{y-z}{5}\)

\(\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\left(đpcm\right)\)

Yêu nè
Xem chi tiết
Thảo Nguyễn『緑』
5 tháng 11 2019 lúc 15:04

Bài 2/a 

Giả sử \(\frac{a}{2}=\frac{b}{3}=\frac{c}{5}=k\Rightarrow\hept{\begin{cases}a=2k\\b=3k\\c=5k\end{cases}}\)

\(\Rightarrow\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)

\(\Rightarrow\frac{3\cdot2k-2\cdot3k}{5}=\frac{2\cdot5k-5\cdot2k}{3}=\frac{5\cdot3k-3\cdot5k}{2}\)

\(\Rightarrow\frac{6k-6k}{5}=\frac{10k-10k}{3}=\frac{15k-15k}{2}\)

\(\Rightarrow\frac{0}{5}=\frac{0}{3}=\frac{0}{2}=0\left(đpcm\right)\)

Bài 2/c

Có a = 2k ; b = 3k ; c = 5k

=> 2 (a - b) (b - c) = a2

=> 2 (2k - 3k) (3k - 5k) = (2k)2

=> 2 (-1)k . (-2)k = 4k2

=> 4k2 = 4k2 (đpcm)

Mình chỉ làm được có vậy thôi, mong bạn thông cảm =))

Chúc bạn học tốt =))

Khách vãng lai đã xóa
Yêu nè
3 tháng 12 2019 lúc 19:38

\(\frac{3a-2b}{5}=\frac{2c-5a}{3}=\frac{5b-3c}{2}\)

\(\Rightarrow\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

 \(\frac{15a-10b}{25}=\frac{6c-15a}{9}=\frac{10b-6c}{4}=\frac{15a-10b+6c-15a+10b-6c}{25+9+4}=0\)

\(\Rightarrow\hept{\begin{cases}\frac{15a-10b}{25}=0\\\frac{6c-15a}{9}=0\end{cases}}\) \(\Rightarrow\hept{\begin{cases}3a-2b=0\\2c-5a=0\end{cases}}\)\(\Rightarrow\hept{\begin{cases}3a=2b\\2c=5a\end{cases}}\)\(\Rightarrow\hept{\begin{cases}\frac{a}{2}=\frac{b}{3}\\\frac{c}{5}=\frac{a}{2}\end{cases}}\)

                                                                                                                   \(\Rightarrow\frac{a}{2}=\frac{b}{3}=\frac{c}{5}\)

Khách vãng lai đã xóa
Nguyễn Tiến Đạt
Xem chi tiết
GV
12 tháng 8 2014 lúc 7:31

Với a=2 thì biểu thức đó = 8/6 + 4/3 + 1 = 16/6 + 1 không là số nguyên nhé.

Đặng Thị Cẩm Tú
Xem chi tiết
Mai Linh
23 tháng 5 2016 lúc 6:57

2.P=\(\frac{3-a}{a+10}\)

a, để P>0 

TH1 3-a>0 và a+10 >0

=> a<3 và a> -10

=> -10<a<3

TH2 3-a<0 và a+10<0

=> a>3 và a<-10(vô lý)

Vậy để P>0 thì -10<a<3

b.để P<0

TH1 3-a<0 và a+10>0

        a>3 và a>-10 

         Vậy a>3

TH2 3-a>0 và a+10<0

   => a<3 và a<-10

Vậy a<-10

vậy để P<0 thì a >3 hoặc a<-10

Mai Linh
23 tháng 5 2016 lúc 7:04

bài 3.

a.\(\frac{7}{3}\)<x<\(\frac{17}{2}\)=>\(\frac{14}{6}\)<x<\(\frac{51}{6}\)

Vậy x=\(\left\{\frac{15}{6};\frac{16}{6};\frac{17}{6};..........;\frac{50}{6}\right\}\)

b.\(\frac{-3}{2}\)<y<2=>\(\frac{-3}{2}\)<y<\(\frac{4}{2}\)

Vậy y=\(\left\{\frac{-2}{2};\frac{-1}{2};\frac{0}{2};\frac{1}{2};\frac{2}{2};\frac{3}{2}\right\}\)

c.\(\frac{-17}{3}\)<z<\(\frac{-3}{2}\)=>\(\frac{-34}{6}\)<z<\(\frac{-9}{6}\)

Vậy z=\(\left\{\frac{-33}{6};\frac{-32}{6};\frac{-31}{6};.........\frac{-10}{6}\right\}\)

Mai Linh
23 tháng 5 2016 lúc 7:08

bài 4. 

\(\frac{a}{m}\)=\(\frac{2a}{2m}\)=\(\frac{a+a}{2m}\);      \(\frac{a+b}{2m}\)

Vì ta có a<b=> a+a<a+b

=> \(\frac{a+a}{2m}\)<\(\frac{a+b}{2m}\)=>\(\frac{a}{m}\)<\(\frac{a+b}{2m}\)(1)

\(\frac{b}{m}\)=\(\frac{2b}{2m}\)=\(\frac{b+b}{2m}\);   \(\frac{a+b}{2m}\)

Vì a<b=>a+b<b+b

=>\(\frac{a+b}{2m}\)<\(\frac{b+b}{2m}\)=>\(\frac{a+b}{2m}\)<\(\frac{b}{m}\)(2)

từ(1) và(2) ta có \(\frac{a}{m}\)<\(\frac{a+b}{2m}\)<\(\frac{b}{m}\)