Chứng minh x^4+x^3+x^2+x+1>0
1. chứng minh x4 - x + 1 = 0 vô nghiệm
2. chứng minh x4 - x2 + 1 = 0 vô nghiệm
3. chứng minh x4 - x3 + 1 = 0 vô nghiệm
4. chứng minh a2 + \(\dfrac{1}{a^2}\)
biết a khác 0
2) \(x^4-x^2+1=0\)(1)
Đặt: t=x2, khi đó:
(1)\(\Leftrightarrow t^2-t+1=0\)
\(\Leftrightarrow\left(t-\dfrac{1}{2}\right)^2+\dfrac{3}{4}=0\left(2\right)\)
\(\Rightarrow\left(2\right)\) vô nghiệm => (1) vô nghiệm
Chứng minh rằng:
A=3/2.x^4-1/6.x^4+1/32.x^4-1/4.x^4>0 (x khác 0)
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)2 =0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| < |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Bài 5. Tìm các số thực x, y, z thỏa mãn: |x − 1| + |y − 2| + (z − x)
2 = 0
Bài 6. Với mọi số thực a, b. Chứng minh rằng: |a| + |b| > |a + b|
Bài 7. Với mọi số thực a, b. Chứng minh rằng: |a| − |b| 6 |a − b|
Bài 8. Chứng minh rằng: |x − 1| + |x − 2| > 1
Bài 9. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| > 2
Bài 10. Chứng minh rằng: |x − 1| + |x − 2| + |x − 3| + |x − 4| > 4
Bài 11. Chứng minh rằng |x − 1| + 2|x − 2| + |x − 3| > 2
Chứng minh (x-1)(x-2)(x-3)(x-4)+2>0 với mọi x
Ta có \(\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]+2\)
\(\Leftrightarrow\left(x^2-5x+4\right)\left(x^2-5x+6\right)+2\)
Đặt \(t=x^2-5x+5\)
\(\Leftrightarrow\left(t-1\right)\left(t+1\right)+2\)
\(\Leftrightarrow t^2-1+2\)
\(\Leftrightarrow t^2+1\)
mà \(t^2\ge0\)
\(\Rightarrow t^2+1>0\)
\(\Leftrightarrow\left(x^2-5x+5\right)^2+1>0\)
Vậy biểu thức trên > 0 với mọi x
Ta cso
(x-1)(x-2)(x-3)(x-4)+2
<=> [ (x-1)(x-4)][(x-2)(x-3)] +2
<=> (x2-5x+4)(x2-5x+6)+2
<=> (x2-5x+5-1)(x2-5x+5+1)+2
<=> (x2-5x+5)2-1+2
<=> (x2-5x+5)2+1
Ta thấy (x2-5x+5)2>=0
=> (x2-5x+5)2+1 >1>0(cmđ)
Chứng minh; x^6 + x^4 - x^3 + x^2 + 1 >0
\(x^6+x^4-x^3+x^2+1>0\)
\(\Leftrightarrow x^6+\left(x^2\right)^2-2\cdot\dfrac{1}{2}x\cdot x^2+\left(\dfrac{1}{2}x\right)^2+\dfrac{3}{4}x^2+1>0\)
\(\Leftrightarrow x^6+\left(x^2-\dfrac{1}{2}x\right)^2+\dfrac{3}{4}x^2+1>0\)(luôn đúng)
=>đpcm
Chứng minh rằng các phương trình sau luôn có nghiệm: a)x^5 - 3x+3=0 b)x^5+x-1=0 c)x^4+x^3-3x^2+x+1=0
Lời giải:
a) $f(x)=x^5-3x+3$ liên tục trên $R$
$f(0)=3>0; f(-2)=-23<0\Rightarrow f(0)f(-2)<0$
Do đó pt $f(x)=0$ có ít nhất 1 nghiệm thuộc $(-2;0)$
Nghĩa là pt đã cho luôn có nghiệm.
b) $f(x)=x^5+x-1$ liên tục trên $R$
$f(0)=-1<0; f(1)=1>0\Rightarrow f(0)f(1)<0$
Do đó pt $f(x)=0$ luôn có ít nhất 1 nghiệm thuộc $(0;1)$
Hay pt đã cho luôn có nghiệm.
c) $f(x)=x^4+x^3-3x^2+x+1$ liên tục trên $R$
$f(0)=1>0; f(-1)=-3<0\Rightarrow f(0)f(-1)<0$
$\Rightarrow f(x)=0$ luôn có ít nhất 1 nghiệm thuộc $(-1;0)$
Hay pt đã cho luôn có nghiệm.
Chứng minh : (x+1)(x+2)(x+3)(x+4)+1 > hoặc = 0 với mọi x
Ta có : \(\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
\(=\left[\left(x+1\right)\left(x+4\right)\right].\left[\left(x+2\right)\left(x+3\right)\right]+1\)
\(=\left(x^2+5x+4\right)\left(x^2+5x+6\right)+1\)
\(=\left(x^2+5x+4\right)\left[\left(x^2+5x+4\right)+2\right]+1\)
\(=\left(x^2+5x+4\right)^2+2\left(x^2+5x+4\right)+1\)
\(=\left(x^2+5x+4+1\right)^2=\left(x^2+5x+5\right)^2\ge0\forall x\)
Chứng minh rằng:
a) (x+1)2>=4x
b) x2+y2+2>=2(x+y)
c) (1/x+1/y)(x+y)>=4 (với x>0; y>0)
d) x/y+y/x>=2 ( với x>0; y>0)
Giúp mình với ạ <3
a) Giả sử `(x+1)^2 >= 4x` là đúng.
Có: `(x+1)^2 >=4x <=> x^2+2x+1>=4x`
`<=>x^2+1>=2x`
`<=>x^2-2x+1>=0`
`<=> (x-1)^2>=0 forall x`.
Vậy điều giả sử là đúng.
b) `x^2+y^2+2 >=2(x+y)`
`<=> (x^2-2x+1)+(y^2-2y+1) >=0`
`<=>(x-1)^2+(y-1)^2>=0 forall x,y`
c) `(1/x+1/y)(x+y)>=4`
`<=> (x+y)/(xy) (x+y) >=4`
`<=> (x+y)^2 >= 4xy`
`<=> x^2+2xy+y^2>=4xy`
`<=> (x-y)^2>=0 forall x,y > 0`
d) `x/y+y/x>=2`
`<=> (x^2+y^2)/(xy) >=2`
`<=> x^2+y^2 >=2xy`
`<=> (x-y)^2>=0 \forall x,y>0`.
a) Xét hiệu \(\left(x+1\right)^2-4x\) = \(x^2-2x+1=\left(x-1\right)^2\ge0\)
=> \(\left(x+1\right)^2-\text{4x}\) \(\ge\) 0
=> \(\left(x+1\right)^2\ge\text{4x}\) (điều phải chứng minh)
b) xét hiệu \(x^2+y^2+2-2\left(x+y\right)\) = \(\left(x-1\right)^2+\left(y-1\right)^2\ge0\)
=> \(x^2+y^2+2-2\left(x+y\right)\ge0\)
=> \(x^2+y^2+2\ge2\left(x+y\right)\) (điều phải chứng minh)
c) Xét hiệu \(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(x+y\right)-4\) = \((\dfrac{x+y}{xy})\left(x+y\right)-4=\dfrac{\left(x+y\right)^2-4xy}{xy}=\dfrac{\left(x-y\right)^2}{xy}\) \(\ge0\)(vì x>0,y>0)
=>\(\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(x+y\right)\ge4\) (điều phải chứng minh)
d) Áp dụng bất đẳng thức Cau-Chy cho các số x>0;y>0 ta có
\(\dfrac{x}{y}+\dfrac{y}{x}\ge2.\left(\dfrac{xy}{yx}\right)=2\)
=> \(\dfrac{x}{y}+\dfrac{y}{x}\ge2\) (điều phải chứng minh)
Mình làm hơi tắt mong bạn thông cảm nhé
Chúc bạn học tốt