Tìm x biết:
(3x+4)^2-(3x-1)×(3x+1)=49
X^2-81=0
tìm x biết:
a, 49x^2 -4=0
b, (x+3)^2 - (x+2)(x-2)=11
c,(2x +1)^2 - (x-3)^2 - 3(x+5)(x-5) =5
d, (3x +1)(3x-1)=8
Giai giùm mình với
a/ Ta có : \(49.x^2-4=0\)
\(\Rightarrow49x^2=4\)
\(\Rightarrow x^2=\frac{4}{49}\Rightarrow\orbr{\begin{cases}x=\frac{-2}{7}\\x=\frac{2}{7}\end{cases}}\)
b/ \(\left(x+3\right)^2-\left(x+2\right)\left(x-2\right)=11\)
\(\left(x+3\right)\left(x+3\right)-\left(x+2\right)\left(x-2\right)=11\)
\(\Rightarrow\left(x^2+2.3.x+3^2\right)-\left(x^2-2^2\right)=11\)
\(\Rightarrow x^2+6x+9-x^2+4=11\)
\(\Rightarrow6x+13=11\)
\(\Rightarrow6x=11-13\)
\(\Rightarrow x=\frac{-2}{6}=\frac{-1}{3}\)
c/ \(\left(2x+1\right)^2-\left(x-3\right)^2-3\left(x+5\right)\left(x-5\right)=5\)
\(\Rightarrow\left(2x+1\right)\left(2x+1\right)-\left(x-3\right)\left(x-3\right)-3\left[\left(x+5\right)\left(x-5\right)\right]=5\)
\(\Rightarrow\left(4x^2+2.2x+1\right)-\left(x^2-2.3x+9\right)-3\left(x^2-25\right)\)\(=5\)
\(\Rightarrow\left(4x^2+4x+1\right)-\left(x^2-6x+9\right)-\left(3x^2-75\right)=5\)
\(\Rightarrow4x^2+4x+1-x^2+6x-9-3x^2+75=5\)
\(\Rightarrow\left(4x^2-x^2-3x^2\right)+\left(4x+6x\right)+\left(1-9+75\right)=5\)
\(\Rightarrow10x+67=5\)
\(\Rightarrow10x=5-67=-62\)
\(\Rightarrow x=\frac{-62}{10}=\frac{-31}{5}\)
d/ \(\left(3x+1\right)\left(3x-1\right)=8\)
\(\Rightarrow9x^2-1=8\)
\(\Rightarrow9x^2=8+1=9\)
\(\Rightarrow x^2=\frac{9}{9}=1\Leftrightarrow\orbr{\begin{cases}x=-1\\x=1\end{cases}}\)
Ai đó bấm hộ mình cái nút đúng đi!
Ta có : 49x2 - 4 = 0
=> 49x2 = 4
=> x2 = 196
=> x2 = 142 ; (-14)2
=> x = 14 ; -14
a) 49 . x2 - 4 = 0
49 . x2 = 4
7 2 . x2 = 22
(7 . x)2 = 22
7 . x = 2
x = 2 : 7
x = \(\frac{2}{7}\)
Tìm x,biết:
a) x^2-36=0
b) (3x-5)^2-(x+6)^2=0
c) (5x-4)^2-49x^2=0
d)4x^3-36x=0
e) 2/3x(x^2-4)=0
a) \(x^2-36=0\)
\(\Leftrightarrow x^2=36\)
\(\Leftrightarrow x=\pm\sqrt{36}=\pm6\)
b) \(\left(3x-5\right)^2-\left(x+6\right)^2=0\)
\(\Leftrightarrow\left(3x-5-x-6\right)\left(3x-5+x+6\right)=0\)
\(\Leftrightarrow\left(2x-11\right)\left(4x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{11}{2}\\x=\frac{-1}{4}\end{cases}}\)
d) \(4x^3-36x=0\)
\(\Leftrightarrow4x\left(x^2-9\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}4x=0\\x^2-9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm3\end{cases}}}\)
Vậy...
tìm x biết
1. 5x( 1 - 2x ) - 3x( x + 18 ) = 0
2. (12x - 5)* (4x - 1) + ( 3x - 7) * ( 1 - 16x ) = 81
#)Giải :
Câu 1 :
5x(1 - 2x ) - 3x ( x+18) = 0
<=> 5x - 10x^2 - 3x^2 - 54x = 0
<=> -13x^2 - 49x = 0
<=> x= 0 hoặc x = - 49/13
Vậy x có hai giá trị là 0 và - 49/13
#)Giải :
Câu 2 :
( 12x - 5 )( 4x - 1 ) + ( 3x - 7 )( 1 - 16x ) = 81
<=> 48x2 - 32x + 5 - 48x + 115x - 7 = 81
<=> 83x - 2 = 81
<=> x = 1
Vậy x = 1
1)5x(1 - 2x ) - 3x ( x+18) = 0
<=> 5x - 10x^2 - 3x^2 - 54x = 0
<=> -13x^2 - 49x = 0
<=> x= 0 hoặc x = -49/13
2) <=> 48x^2 - 12x - 20x + 5 + 3x - 48x^2 - 7 + 112x = 81
<=> -32x + 115x = 81 + 2
<=> 83x = 83
<=> x = 1
tim x biet
a/(3x-5)(2x-1)-(x+2)(6x-1)=0
b/ (3x-5)(3x+2)-(3x-1)2=-5
c/(3x+2)(x-5)=3(x-1)2-2
d/ (x+1)2/3 - (x-2)2/2 = 2x+1/2 (x-3)2/6
g/49x2=(3x+2)2
h/(3x-4)2-(2x-2)2-3(x-2)(2x-1)=0
i/ (x-2)(x2-2x+4)-x(x2+2)=15
k/ 6x2-7x-3=0
m/(x+5)(x-3)+x2-25=0
e/ x3+3x2=4x+12
f/ (6x+7)2(3x+4)(x+1)=6
tìm x
a,x^3+3x^2=4x+12 b,49x^2=(3x+2)^2 c,3x^2(x-5)+12(5-x)=0 d,x^2(x-5)+45-9x=0
\(a,x^3+3x^2=4x+12\)
\(x^2\left(x+3\right)=4\left(x+3\right)\)
\(\Rightarrow\left(x+3\right)\left(x^2-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\x^2-4=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\pm2\end{cases}}\)
\(b,49x^2=\left(3x+2\right)^2\)
\(7x=3x+2\)
\(\Rightarrow7x-3x=2\)
\(\Rightarrow4x=2\)
\(\Rightarrow x=\frac{1}{2}\)
các câu còn lại tương tự nha
\(a,x^3+3x^2=4x+12\)
\(x^3+3x^2-4x-12=0\)
\(\Rightarrow x^2\left(x+3\right)-4\left(x+3\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+3=0\\\left(x+2\right)\left(x-2\right)=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=-3\\x=\pm2\end{cases}}\)
\(b,49x^2=\left(3x+2\right)^2\)
\(\Rightarrow\left(7x\right)^2=\left(3x+2\right)^2\)
\(\Rightarrow7x=3x+2\)
\(\Rightarrow7x-3x=2\)
\(\Rightarrow4x=2\)
\(\Rightarrow x=\frac{1}{2}\)
\(c,3x^2\left(x-5\right)+12\left(5-x\right)=0\)
\(3x^2\left(x-5\right)-12\left(x-5\right)=0\)
\(\left(x-5\right)\left(3x^2-12\right)=0\)
\(\Rightarrow3.\left(x-5\right)\left(x^2-4\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x=5\\x=\pm2\end{cases}}}\)
\(d,x^2\left(x-5\right)+45-9x=0\)
\(x^2\left(x-5\right)+9\left(5-x\right)=0\)
\(x^2\left(x-5\right)-9\left(x-5\right)=0\)
\(\left(x-5\right)\left(x^2-9\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x-5=0\\x^2-9=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=5\\x=\pm3\end{cases}}\)
Tìm x biết a) 3x^2+x)4-3x)=12 b)3x^2-2x-1=0
b: \(3x^2-2x-1=0\)
=>\(3x^2-3x+x-1=0\)
=>\(\left(x-1\right)\left(3x+1\right)=0\)
=>\(\left[{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=-\dfrac{1}{3}\end{matrix}\right.\)
a: Bạn ghi lại đề đi bạn
Bài 1: Tìm x biết a) x^3 - 4x^2 - x + 4= 0 b) x^3 - 3x^2 + 3x + 1=0 c) x^3 + 3x^2 - 4x - 12=0 d) (x-2)^2 - 4x +8 =0
a: \(x^3-4x^2-x+4=0\)
=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)
=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)
=>\(\left(x-4\right)\left(x^2-1\right)=0\)
=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)
b: Sửa đề: \(x^3+3x^2+3x+1=0\)
=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)
=>\(\left(x+1\right)^3=0\)
=>x+1=0
=>x=-1
c: \(x^3+3x^2-4x-12=0\)
=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)
=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)
=>\(\left(x+3\right)\left(x^2-4\right)=0\)
=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)
=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)
d: \(\left(x-2\right)^2-4x+8=0\)
=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)
=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)
=>\(\left(x-2\right)\left(x-2-4\right)=0\)
=>(x-2)(x-6)=0
=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)
tìm x biết a, (3x+2) -(x-1) = 49x+1)
\(\left(3x+2\right)-\left(x-1\right)=49x+1\)
\(\Leftrightarrow3x+1-x+1-49x-1=0\)
\(\Leftrightarrow-47x-1=0\)
\(\Leftrightarrow-47x=1\)
\(\Leftrightarrow x=-\dfrac{1}{47}\)
Ta có : (3x+2) - (x-1) = 49x + 1
\(\Leftrightarrow\) 3x + 2 - x +1 = 49x + 1
\(\Leftrightarrow\) 2x + 3 = 49x +1
\(\Leftrightarrow\) 49x + 1 - 2x -3 = 0
\(\Leftrightarrow\) 47x - 2 = 0
\(\Leftrightarrow\) x = \(\dfrac{2}{47}\)
Chuẩn 100%
2. tìm x thuộc Z:
a. (x+1).(3-x)=0
b. (x-2).(2x-1)=0
c. (3x+9).(1-3x)=0
d. (x2+1).(81-x2)=0
Làm 1 câu thuii nha mik nhát quá!! nhưng các bài còn lại tương tự nha!!
a. \(\left(x+1\right)\left(3-x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x+1=0\\3-x=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)
Vậy..
hok tốt!!
\(\left(x+1\right)\left(3-x\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\3-x=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=3\end{cases}}}\)
vậy x=-1 hoặc x=3
\(\left(x-2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\2x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=2\\x=\frac{1}{2}\end{cases}}}\)
vậy x=2 hoặc x=1/2
câu c tương tự
\(\left(x^2+1\right)\left(81-x^2\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x^2+1=0\\81-x^2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x^2=-1\\x^2=81\end{cases}}}\Leftrightarrow\orbr{\begin{cases}x\in\varnothing\\x=\pm9\end{cases}}\)
vậy x=9 hoặc x=-9
Những cách dành cho trâu bò xD
\(a,\left(x+1\right)\left(3-x\right)=0\)
\(< =>3x-x^2+3-x=0\)
\(< =>2x-x^2+3=0\)
\(< =>-x^2+2x+3=0\)
Ta có : \(\Delta=2^2-4.\left(-1\right).3=4+12=16\)
Vì \(\Delta>0\)nên pt có 2 nghiệm phân biệt
\(x_1=\frac{-2+\sqrt{16}}{-2}=\frac{2}{-2}=-1\)
\(x_2=\frac{-2-\sqrt{16}}{-2}=\frac{-6}{-2}=3\)
Vậy ...