\(\frac{\text{a}}{b+c+1}=\frac{b}{\text{a}+c+1}=\frac{c}{\text{a}+b+1}=\text{a}+b+c\)
\(\frac{\text{a}}{b+c+1}=\frac{b}{\text{a}+c+1}=\frac{c}{\text{a}+b+1}=\text{a}+b+c\)
Sửa đề:
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{a}{b+c+1}=\dfrac{b}{a+c+1}=\dfrac{c}{a+b-2}=\dfrac{a+b+c}{b+c+1+a+c+1+a+b+-2}=\dfrac{a+b+c}{\left(b+c+a+c+a+b\right)+\left(1+1-2\right)}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
Tương đương với:
\(\left\{{}\begin{matrix}\dfrac{a}{b+c+1}=\dfrac{1}{2}\\\dfrac{b}{a+c+1}=\dfrac{1}{2}\\\dfrac{c}{a+c-2}=\dfrac{1}{2}\\a+b+c=\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}b+c+1=2a\\a+c+1=2b\\a+c-2=2c\\a+b+c=\dfrac{1}{2}\end{matrix}\right.\)
\(\circledast\) Từ \(a+b+c=\dfrac{1}{2}\Leftrightarrow b+c=\dfrac{1}{2}-a\)
Nên \(\dfrac{1}{2}-a+1=2a\)(tự tìm a nhé dễ lắm)
\(\circledast\) Từ \(a+b+c=\dfrac{1}{2}\Leftrightarrow a+c=\dfrac{1}{2}-b\)
Nên \(\dfrac{1}{2}-b+1=2b\)(tự tính b)
\(\circledast\) Từ \(a+b+c=\dfrac{1}{2}\Leftrightarrow a+b=\dfrac{1}{2}-c\)
Nên\(\dfrac{1}{2}-c-2=2c\)(tự tính c)
Vậy...
Cho dãy tỉ số bằng nhau : \(\frac{3a+b+2c}{2a+c}\text{=}a+\frac{3b+c}{2b}\text{=}a+\frac{2b+2c}{b+c}\)
Tính A = \(\text{(}1+\frac{b}{a}\text{)}.\text{(}1+\frac{c}{b}\text{)}.\text{(}1+\frac{a}{c}\text{)}\)
CMR:
\(1< \frac{\text{a}}{\text{b + c}}+\frac{\text{b}}{\text{c + a}}+\frac{\text{c}}{\text{ a + b}}< 2\)
chứng minh rằng:
a)\(\frac{c\text{os}a.cot\text{a}-sin\text{a}.t\text{ana}}{\frac{1}{sin\text{a}}-\frac{1}{c\text{os}a}}=1+sin\text{a}.c\text{os}a\)
b)\(\frac{c\text{os}a+sin\text{a}-1}{c\text{os}a-sin\text{a}+1}=\frac{sin\text{a}}{1+c\text{os}a}\)
c)\(\frac{sin\text{a}}{1+c\text{os}a}+\frac{1+c\text{os}a}{sin\text{a}}=\frac{2}{sin\text{a}}\)
chứng minh rằng
a)
\(\frac{sin\text{a}}{1+c\text{os}a}+cot\text{a}=\frac{1}{sin\text{a}}\)
b)\(\frac{1}{c\text{os}a}-\frac{c\text{os}a}{1+sin\text{a}}=t\text{ana}\)
c) \(\frac{t\text{ana}-sin\text{a}}{sin^3a}=\frac{1}{c\text{os}a\left(1+c\text{os}a\right)}\)
d) \(\frac{sin\text{a}+c\text{os}a-1}{sin\text{a}-c\text{os}a+1}=\frac{c\text{os}a}{1+sin\text{a}}\)
Lời giải:
a)
\(\frac{\sin a}{1+\cos a}+\cot a=\frac{\sin a}{1+\cos a}+\frac{\cos a}{\sin a}=\frac{\sin ^2a+\cos^2a+\cos a}{\sin a(1+\cos a)}\)
\(=\frac{1+\cos a}{\sin a(1+\cos a)}=\frac{1}{\sin a}\) (đpcm)
b)
\(\frac{1}{\cos a}-\frac{\cos a}{1+\sin a}=\frac{1+\sin a-\cos ^2a}{\cos a(1+\sin a)}=\frac{(1-\cos ^2a)+\sin a}{\cos a(\sin a+1)}\)
\(=\frac{\sin^2a+\sin a}{\cos a(\sin a+1)}=\frac{\sin a(\sin a+1)}{\cos a(\sin a+1)}=\frac{\sin a}{\cos a}=\tan a\) (đpcm)
c)
\(\frac{\tan a-\sin a}{\sin ^3a}=\frac{\frac{\sin a}{\cos a}-\sin a}{\sin ^3a}=\frac{\frac{1}{\cos a}-1}{\sin ^2a}=\frac{1-\cos a}{\cos a\sin ^2a}=\frac{1-\cos a}{\cos a(1-\cos ^2a)}=\frac{1}{\cos a(1+\cos a)}\)
d)
\(\frac{\sin a+\cos a-1}{\sin a-\cos a+1}=\frac{(\sin a+\cos a-1)(\sin a+\cos a+1)}{(\sin a-\cos a+1)(\sin a+\cos a+1)}=\frac{(\sin a+\cos a)^2-1}{(\sin a+1)^2-\cos ^2a}\)
\(=\frac{\sin ^2a+\cos ^2a+2\sin a\cos a-1}{\sin ^2a+1+2\sin a-\cos ^2a}=\frac{1+2\sin a\cos a-1}{\sin ^2a+1+2\sin a-(1-\sin ^2a)}\)
\(=\frac{2\sin a\cos a}{2\sin ^2a+2\sin a}=\frac{2\sin a\cos a}{2\sin a(\sin a+1)}=\frac{\cos a}{1+\sin a}\) (đpcm)
Mấu chốt trong các bài này là việc sử dụng công thức $\sin ^2a+\cos ^2a=1$
Lời giải:
a)
\(\frac{\sin a}{1+\cos a}+\cot a=\frac{\sin a}{1+\cos a}+\frac{\cos a}{\sin a}=\frac{\sin ^2a+\cos^2a+\cos a}{\sin a(1+\cos a)}\)
\(=\frac{1+\cos a}{\sin a(1+\cos a)}=\frac{1}{\sin a}\) (đpcm)
b)
\(\frac{1}{\cos a}-\frac{\cos a}{1+\sin a}=\frac{1+\sin a-\cos ^2a}{\cos a(1+\sin a)}=\frac{(1-\cos ^2a)+\sin a}{\cos a(\sin a+1)}\)
\(=\frac{\sin^2a+\sin a}{\cos a(\sin a+1)}=\frac{\sin a(\sin a+1)}{\cos a(\sin a+1)}=\frac{\sin a}{\cos a}=\tan a\) (đpcm)
c)
\(\frac{\tan a-\sin a}{\sin ^3a}=\frac{\frac{\sin a}{\cos a}-\sin a}{\sin ^3a}=\frac{\frac{1}{\cos a}-1}{\sin ^2a}=\frac{1-\cos a}{\cos a\sin ^2a}=\frac{1-\cos a}{\cos a(1-\cos ^2a)}=\frac{1}{\cos a(1+\cos a)}\)
d)
\(\frac{\sin a+\cos a-1}{\sin a-\cos a+1}=\frac{(\sin a+\cos a-1)(\sin a+\cos a+1)}{(\sin a-\cos a+1)(\sin a+\cos a+1)}=\frac{(\sin a+\cos a)^2-1}{(\sin a+1)^2-\cos ^2a}\)
\(=\frac{\sin ^2a+\cos ^2a+2\sin a\cos a-1}{\sin ^2a+1+2\sin a-\cos ^2a}=\frac{1+2\sin a\cos a-1}{\sin ^2a+1+2\sin a-(1-\sin ^2a)}\)
\(=\frac{2\sin a\cos a}{2\sin ^2a+2\sin a}=\frac{2\sin a\cos a}{2\sin a(\sin a+1)}=\frac{\cos a}{1+\sin a}\) (đpcm)
1.Cho ab/b = bc/c=ca/a. Tính A= (a-b)(b-c)(c-a) + 2016
2. Cho (ab + bc)/ ( a+b) = ( bc + ca )/(b+c)= ( ca + ab) / (c+a)
Tính M=\(\left(\frac{b}{a}+1\right)\left(\frac{c}{b}+1\right)\left(\frac{a}{c}+1\right)+2016\)
3. Cho a+b+c+d khác 0 và \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)
Tìm giá trị của A=\(\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}\)
\(1)\)\(\frac{\overline{ab}}{b}=\frac{\overline{bc}}{c}=\frac{\overline{ca}}{a}\)
\(\Leftrightarrow\)\(\frac{10a+b}{b}=\frac{10b+c}{c}=\frac{10c+a}{a}\)
\(\Leftrightarrow\)\(\frac{10a}{b}=\frac{10b}{c}=\frac{10c}{a}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{10a}{b}=\frac{10b}{c}=\frac{10c}{a}=\frac{10a+10b+10c}{a+b+c}=\frac{10\left(a+b+c\right)}{a+b+c}=10\)
Do đó :
\(\frac{10a}{b}=10\)\(\Leftrightarrow\)\(a=b\)
\(\frac{10b}{c}=10\)\(\Leftrightarrow\)\(b=c\)
\(\frac{10c}{a}=10\)\(\Leftrightarrow\)\(c=a\)
\(\Rightarrow\)\(a=b=c\)
\(\Rightarrow\)\(A=\left(a-b\right)\left(b-c\right)\left(c-a\right)+2016=2016\)
\(2)\)\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{2\left(\overline{ab}+\overline{bc}+\overline{ca}\right)}{2\left(a+b+c\right)}=\frac{\overline{ab}+\overline{bc}+\overline{ca}}{a+b+c}\)
\(=\frac{10a+b+10b+c+10c+a}{a+b+c}=\frac{11a+11b+11c}{a+b+c}=\frac{11\left(a+b+c\right)}{a+b+c}=11\)
Do đó :
\(\frac{\overline{ab}+\overline{bc}}{a+b}=11\)\(\Leftrightarrow\)\(10a+11b+c=11a+11b\)\(\Leftrightarrow\)\(c=a\)
\(\frac{\overline{bc}+\overline{ca}}{b+c}=11\)\(\Leftrightarrow\)\(10b+11c+a=11b+11c\)\(\Leftrightarrow\)\(a=b\)
\(\frac{\overline{ca}+\overline{ab}}{c+a}=11\)\(\Leftrightarrow\)\(10c+11a+b=11c+11a\)\(\Leftrightarrow\)\(b=c\)
\(\Rightarrow\)\(a=b=c\)
\(\Rightarrow\)\(M=\left(\frac{b}{a}+1\right)\left(\frac{c}{b}+1\right)\left(\frac{a}{c}+1\right)+2016=2.2.2+2016=2024\)
Chúc bạn học tốt ~
Ta có: \(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)
\(\Rightarrow\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)
hay \(\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)
Do các tử số trên bằng nhau nên các mẫu số cũng bằng nhau hay \(b+c+d=a+c+d=a+b+d=a+b+c\)
Suy ra a = b =c =d
\(\Rightarrow A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)
\(3)\)\(\frac{a}{b+c+d}=\frac{b}{a+c+d}=\frac{c}{a+b+d}=\frac{d}{a+b+c}\)
\(\Leftrightarrow\)\(\frac{a}{b+c+d}+1=\frac{b}{a+c+d}+1=\frac{c}{a+b+d}+1=\frac{d}{a+b+c}+1\)
\(\Leftrightarrow\)\(\frac{a+b+c+d}{b+c+d}=\frac{a+b+c+d}{a+c+d}=\frac{a+b+c+d}{a+b+d}=\frac{a+b+c+d}{a+b+c}\)
Vì các tử bằng nhau nên mẫu cũng bằng nhau :
+) Với \(b+c+d=a+c+d\)\(\Leftrightarrow\)\(a=b\)
+) Với \(a+b+d=a+b+c\)\(\Leftrightarrow\)\(c=d\)
+) Với \(a+c+d=a+b+d\)\(\Leftrightarrow\)\(b=c\)
\(\Rightarrow\)\(a=b=c=d\)
\(\Rightarrow\)\(A=\frac{a+b}{c+d}+\frac{b+c}{a+d}+\frac{c+d}{a+b}+\frac{d+a}{b+c}=1+1+1+1=4\)
Chúc bạn học tốt ~
Cho các số thực không âm a,b,ca,b,c thoả mãn a+b+c=1a+b+c=1. Chứng minh rằng :
\(\sqrt{a+\frac{\left(b-c\right)^2}{4}}+\sqrt{b+\frac{\left(c-a\right)^2}{4}}+\sqrt{c+\frac{\left(a-b\right)^2}{4}}\le\sqrt{3}+\left(1-\frac{\sqrt{3}}{2}\right)\left(\text{|
}a-b\text{|
}\right)+\text{|
}b-c\text{|
}+\text{|
}c-a\text{|
}.\)
Tìm các số A,B,C để có:
\(\frac{\text{x^2-x+2}}{\text{(x-1)^3}}=\frac{A}{\text{(x-1)^3}}+\frac{B}{\text{(x-1)^2}}+\frac{C}{\text{x-1}}\)
\(x^2-x+2=A+B\left(x-1\right)+C\left(x-1\right)^2\)
\(=A+Bx-B+Cx^2-2Cx+C=Cx^2-\left(2C-B\right)x+\left(A+C\right)\)
\(\hept{\begin{cases}C=1\\2C-B=1\\A+C=2\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}C=1\\B=1\\A=1\end{cases}}\)
cho a,b,c,d la các số thực dương co tong bang 1. Cmr
\(\frac{\text{a}^2}{\text{a}+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+\text{a}}\ge\frac{1}{2}\)
Cách 1. Áp dụng BĐT AM-GM :
\(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{\left(a+b+c+d\right)^2}{2\left(a+b+c+d\right)}\)
\(\Rightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}=\frac{1}{2}\)
Cách 2. Áp dụng BĐT Cauchy : \(\frac{a^2}{a+b}+\frac{a+b}{4}\ge2\sqrt{\frac{a^2}{a+b}.\frac{a+b}{4}}=a\)
Tương tự : \(\frac{b^2}{b+c}+\frac{b+c}{4}\ge b\) , \(\frac{c^2}{c+d}+\frac{c+d}{4}\ge c\), \(\frac{d^2}{d+a}+\frac{d+a}{4}\ge d\)
Cộng theo vế : \(\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}+\frac{1}{4}.2.\left(a+b+c+d\right)\ge a+b+c+d\)
\(\Leftrightarrow\frac{a^2}{a+b}+\frac{b^2}{b+c}+\frac{c^2}{c+d}+\frac{d^2}{d+a}\ge\frac{a+b+c+d}{2}=\frac{1}{2}\)