cho ΔABC cân tại A (A<90o) các đường cao BD VÀ CE ( DϵAC, EϵAB) cắt nhau tại H
a) cm ΔABD=ΔACE
b) ΔBHC là tam giác gì ? vì sao?
c) so sánh HB và HD
d)Nϵtia đối của tia EH , NH<HC
Mϵtia đối của tia DH, MH=HN. CM BN,AH,CM đồng quy
Bài1:Cho ΔMNP vuông tại N. Tính độ dài MN biết MP=√30cm,NP=√14 cm
Bài2:Cho ΔABC cân tại A. Biết AB=2cm. Tính BC
Bài3:Cho ΔABC vuông tại A,AH⊥BC tại H. Tính độ dài các cạnh của ΔABC biết AH=6cm,HB=4cm,HC=9cm
Bài4:Cho ΔABC vuông tại A,AH⊥BC tại H. Tính độ dài các cạnh của ΔABC biết AH=4cm,HB=2cm,HC=8cm
Bài5:Cho ΔABC vuông tại A,AH⊥BC tại H.Biết AB=4cm,HB=2cm,HC=8cm.Tính BC,AH,AC
Bài6:Cho ΔABC vuông tại A,AH⊥BC tại H.Biết AB=6cm,AC=8cm và \(\dfrac{HB}{HC}\)=\(\dfrac{9}{16}\)Tính HB,HC
Bài 3:
\(AB=\sqrt{AH^2+BH^2}=\sqrt{6^2+4^2}=2\sqrt{13}\left(cm\right)\)
BC=13cm
=>\(AC=3\sqrt{13}\left(cm\right)\)
Cho ΔABC vuông cân tại A , có cạnh BC =3a . Hảy tính diện tích ΔABC.
\(AB=\sqrt{\dfrac{BC^2}{2}}=\sqrt{\dfrac{9a^2}{2}}=\sqrt{\dfrac{18a^2}{4}}=\dfrac{3a\sqrt{2}}{2}\)
\(S_{ABC}=\dfrac{AB\cdot AC}{2}=\dfrac{18a^2}{4}:2=\dfrac{18a^2}{8}=\dfrac{9a^2}{4}\)
Câu 7: Một hình chữ nhật có 2 kích thước là (3x - y) và (3x + y). Biểu thức tính diện tích hình chữ nhật theo x và y là?
A. 3x² - y² B. 9x² - y²
Câu 8: Cho ΔABC. Các điểm D và E lần lượt trên các cạnh AB và AC sao cho DE / / BC. Tứ giác BDEC là hình thang cân nếu ΔABC?
A. ΔABC vuông tại A B. ΔABC cân tại A
C. ΔABC cân tại B D. ΔABC vuông tại C
1. Cho ΔABC cân tại A: K,H ϵ AB, AC sao cho AK= AH. C/m BK=CK
2. ΔABC cân tại A. Kẻ BH, CK sao cho K, H ϵ AB, AC và góc HBC= góc KCB. C/m góc ABH = góc ACK
2: góc ABH+góc HBC=góc ABC
góc ACK+góc KCB=góc ACB
mà góc ABC=góc ACB; góc HBC=góc KCB
nên góc ABH=góc ACK
Cho ΔABC cân tại A có AB=AC=6cm, BC=4cm. Tính bán kính đường tròn tìm ngoại tiếp ΔABC
Gọi O là tâm đường tròn ngoại tiếp ΔABC
Gọi H là giao của AO với BC
AB=AC
OB=OC
Do đó: AO là trung trực của BC
=>AH là trung trực của BC
=>H là trung điểm của BC
HB=HC=4/2=2cm
Kẻ giao của AO với (O) là D
=>AD là đường kính của (O)
Xét (O) có
ΔABD nội tiếp
ADlà đường kính
Do đó: ΔBAD vuông tại B
ΔAHB vuông tại H
=>AH^2+HB^2=AB^2
=>\(AH^2=6^2-2^2=32\)
=>\(AH=4\sqrt{2}\left(cm\right)\)
Xét ΔBAD vuông tại B có BH là đường cao
nên AB^2=AH*AD
=>\(AD=\dfrac{6^2}{4\sqrt{2}}=\dfrac{9}{\sqrt{2}}\left(cm\right)\)
=>\(R=\dfrac{AD}{2}=\dfrac{9}{2\sqrt{2}}\left(cm\right)\)
Bài 5 Cho ΔABC cân tại A, hai trung tuyến BM, CN cắt nhau tại K. Chứng minh :
a) ΔBNC = ΔCMB
b) ΔBKC cân tại K
c) MN // BC
a) Xét ∆BNC và ∆CMB có:
ABC = ACB ( ∆ABC cân tại A )
BC là cạnh chung
BN = CM ( N,M là trung điểm AB,AC và AB=AC )
∆BNC = ∆CMB (c_g_c)
b) Xét ∆AMB và ∆ANC có:
BAC là góc chung
AN=AM ( giải thích như trên )
AB=AC ( ∆ABC cân tại A )
∆AMB = ∆ANC ( c g c )
Có ^ ABM = ACN
Mà ABC = ACB
KBC = KCB
∆KBC cân tại K c) Ta có:
N là trung điểm AB
M là trung điểm AC
MN là đường trung bình ∆ABC cân
MN // BC xong rùii đó
a)Cho ΔABC có a=5,b=6,góc ACB=30 độ.Tính cạnh AB
b)Cho ΔABC cân tại A,có cạnh AB=a.Tính số đo các cạnh,các góc còn lại của ΔABC và tính bán kính đường tròn ngoại tiếp ΔABC biết góc A=70 độ
cho ΔABC cân tại A,PG BE và CF ,vẽ EH ⊥BC.Đường thẳng EH cắt AB tại K. a)CM: ΔAEF cân b)CM:EF//BC, ΔBEF cân,c)CM:EH<EK
cho ΔABC có đường trung tuyến AM đồng thời là đường phân giác của góc A.Chứng minh rằng ΔABC cân tại A.
Xét ΔABC có
AM vừa là đường phân giác, vừa là đường trung tuyến
nên ΔABC cân tại A
Bài 1 : Cho hình thang ABCD (AB//CD) .Hai đường phân giác của góc A và B cắt nhau tại điểm K thuộc đáy CD. Chứng minh AD+BC= DC
Bài 2 : Cho ΔABC vuông cân tại A , ở phía ngoài ΔABC , vẽ Δ BCD vuông cân tại B . Tứ giác abcd là hình gì ? Vì sao ?
Bài 2:
Ta có: \(\widehat{ACD}=\widehat{ACB}+\widehat{DCB}\)(tia CB nằm giữa hai tia CA và CD)
\(\Leftrightarrow\widehat{ACD}=45^0+45^0=90^0\)
Xét tứ giác ACDB có
CD//AB(cùng vuông góc với AC)
nên ACDB là hình thang có hai đáy là CD và AB(Định nghĩa hình thang)
Hình thang ACDB(CD//AB) có \(\widehat{CAB}=90^0\)(gt)
nên ACDB là hình thang vuông(Định nghĩa hình thang vuông)