cho M =x^2-5 /x^2-2 (x thuộc Z)
tìm x để M thuộc Z
Cho M=X^2-5/x^2-2 (X thuộc Z)
Tìm X Thuộc Z để M thuộc Z
cho M =x^2-5 /x^2-2(x thuộc Z) tìm x để M thuộc Z
Cho biểu thức M = x^2 - 5 / x^2 - 2 ( x thuộc Z) . Tìm x thuộc Z để M có giá trị là số nguyên.
ta có: \(M=\frac{x^2-5}{x^2-2}=\frac{x^2-2-3}{x^2-2}=1-\frac{3}{x^2-2}\)
Để M có giá trị nguyên
=> 3/x^2 - 2 thuộc Z
=> 3 chia hết cho x^2 - 2
=> x^2-2 thuộc Ư(3)={1;-1;3;-3}
nếu x^2-2 = 1 => x^2 = 3 \(\Rightarrow x=\sqrt{3};x=-\sqrt{3}\) (Loại)
x^2-2 = -1 => x^2 = 1 => x = 1 hoặc x = -1 (TM)
x^2-2 = 3 => x^2 = 5 \(\Rightarrow x=\sqrt{5};x=-\sqrt{5}\) (Loại)
x^2-2 = -3 => x^2 = -1 => không tìm được x
KL:...
Cho biểu thức M (x/x2 - 25 - x-5/x2 + 5x) : 2x-5/x2+ x
a) rút gon biểu thức M
b) Tính giá trị của M khi x = 2,5
c) Tìm x để M = 1
e) Tìm x thuộc Z để M thuộc Z
cho M= x^2+x/x^2-2x+1:(x+1/x-1/1-x +2x^2/x^2-x)
Rút gọn M
tìm x thuộc z để M thuộc z
tìm x để M<1
tìm GTNN của M khi x>1
Rút gọn:
\(M=\frac{x^2+x}{x^2-2x+1}:\left(\frac{x+1}{x}-\frac{1}{1-x}+\frac{2x^2}{x^2-x}\right)\)
\(M=\frac{x\left(x+1\right)}{\left(x-1\right)^2}\cdot\frac{x\left(x-1\right)}{x^2-1+1+2x^2}\)
\(M=\frac{x\left(x+1\right)}{x-1}\cdot\frac{x}{3x^3}\)
\(M=\frac{x+1}{3x\left(x-1\right)}\)
Cho biểu thức M=\(\frac{2\sqrt{x}-9}{x-5\sqrt{x}+6}+\frac{2\sqrt{x}+1}{\sqrt{x}-3}+\frac{\sqrt{x+3}}{2-\sqrt{x}}\)
a/ Tìm điều kiễn xác địch của x để M có nghĩa và rút gon M
b/ Tìm x để M bằng 5
c/ tìm x thuộc z để m thuộc z
1/ ĐKXĐ , rút gọn M
2/ tìm x để M= 2
3/ tìm x để M < 0
4/ tìm x để M > 2
5/ TÌM X THUỘC z ĐỂ M thuộc Z
M = \(\left(\frac{9}{x\left(x^2-9\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)
<=> M =
Cho biểu thức A= x - 5/x-4 và B=2/x+5 + x+25/x^2-25 (với x không bằng +- 5; x không bằng +-4 )
a) Tính giá trị của A khi x = - 3
b) Rút gọn biểu thức B
c) Tìm x thuộc Z để M thuộc Z , biết M = A.B
a: Thay x=-3 vào A, ta được:
\(A=\dfrac{-3-5}{-3-4}=\dfrac{8}{7}\)
b: \(B=\dfrac{2}{x+5}+\dfrac{x+25}{\left(x+5\right)\left(x-5\right)}=\dfrac{2x-10+x+25}{\left(x+5\right)\left(x-5\right)}=\dfrac{3x+15}{\left(x-5\right)\left(x+5\right)}=\dfrac{3}{x-5}\)
c: Để M là số nguyên thì \(x-4\in\left\{1;-1;3;-3\right\}\)
hay \(x\in\left\{3;7;1\right\}\)
Cho
M=(√x+5)/(√x+1)
a, tìm x thuộc Z để M thuộc Z
b, tìm x thuộc Z để M có giá trị nguyên
M=\(\frac{\sqrt{x}+5}{\sqrt{x}+1}\)= \(\frac{\sqrt{x}+1+4}{\sqrt{x}+1}\)= 1+\(\frac{4}{\sqrt{x}+1}\)
Để M thuộc Z thì \(\frac{4}{\sqrt{x}+1}\) thuộc Z =>\(\sqrt{x}+1\) thuộc Ư(4)={ -1 ; 1 ; -2 ; 2 ; -4; 4 }
\(\sqrt{x}+1\) | -4 | -2 | -1 | 1 | 2 | 4 |
\(\sqrt{x}\) | -5 | -3 | -2 | 0 | 1 | 3 |
x | 25 | 9 | 4 | 0 | 1 | 9 |
KL : Với x thuộc {25 ; 9 ;4 ;0 ;1 } thì M thuộc Z
Chú ý nha bạn : Câu a và câu b như nhau vì m thuộc z <=> m có giá trị nguyên