Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Min Min
Xem chi tiết
Min Min
Xem chi tiết
Trần Ngọc Minh Khoa
14 tháng 10 2017 lúc 21:23

\(4a^2+4b^2+4c^2+4d^2-4ab-4ac-4ad\) \(\ge 0\)

\(\leftrightarrow\) \(a^2-4ab+4b^2+a^2-4ac+4c^2+a^2-4ad+4d^2+a^2\) \(\ge 0\)

\(\leftrightarrow\) \(\left(a-2b\right)^2+\left(a-2c\right)^2+\left(a-2d\right)^2+a^2\) \(\ge 0\) (luôn đúng)

Trường lại
Xem chi tiết
kudo shinichi
29 tháng 1 2019 lúc 18:24

Sửa đề: a,b,c,d>0

C/m: \(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2\ge\left(a+c\right)\left(c+d\right)\)

Áp dụng BĐT AM-GM ta có:

\(\left(\frac{a+b}{2}+\frac{c+d}{2}\right)^2=\left[\frac{\left(a+c\right)+\left(b+d\right)}{2}\right]^2\ge\left[\frac{2.\sqrt{\left(a+c\right)\left(b+d\right)}}{2}\right]^2=\left(a+c\right)\left(b+d\right)\)

Dấu " = " xảy ra <=> a+c=b+d

Min Min
Xem chi tiết
Akai Haruma
1 tháng 10 2017 lúc 16:44

Lời giải:

\(a^2+b^2+c^2+d^2\geq a(b+c+d)\)

\(\Leftrightarrow 4a^2+4b^2+4c^2+4d^2\geq 4a(b+c+d)\)

\(\Leftrightarrow (a-2b)^2+(a-2c)^2+(a-2d)^2+a^2\geq 0\)

BĐT trên luôn đúng nên ta có đpcm.

Dấu bằng xảy ra khi \(0=a=2b=2c=2d\Leftrightarrow a=b=c=d=0\)

linh ngoc
Xem chi tiết
linh ngoc
22 tháng 7 2018 lúc 10:30

Sorry, đề bài thiếu: a,b,c,d là số dương

Nguyễn Khắc Quang
Xem chi tiết
Không Có Tên
Xem chi tiết
Thục Trinh
Xem chi tiết
Eren
11 tháng 2 2019 lúc 21:53

Câu b search google bđt Min-cốp-xki thẳng tiến

Thục Trinh
4 tháng 2 2019 lúc 20:59

Chị ơi!

lan hương
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 6 2019 lúc 9:52

a/ Bình phương 2 vế:

\(\frac{a+2\sqrt{ab}+b}{4}\le\frac{a+b}{2}\)

\(\Leftrightarrow a-2\sqrt{ab}+b\ge0\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)\ge0\) (luôn đúng)

Vậy BĐT được chứng minh

b/ Bình phương:

\(a^2+b^2+c^2+d^2+2\sqrt{a^2c^2+a^2d^2+b^2c^2+b^2d^2}\ge a^2+b^2+c^2+d^2+2ac+2bd\)

\(\Leftrightarrow\sqrt{a^2c^2+a^2d^2+b^2c^2+b^2d^2}\ge ac+bd\)

\(\Leftrightarrow a^2c^2+a^2d^2+b^2c^2+b^2d^2\ge a^2c^2+b^2d^2+2abcd\)

\(\Leftrightarrow a^2d^2-2abcd+b^2c^2\ge0\)

\(\Leftrightarrow\left(ad-bc\right)^2\ge0\) (luôn đúng)