chứng tỏ: (5n+1).(5n+2) chia hết cho 6
Chứng tỏ
(3^5n+2)+(3^5n+1)-(3^5n) chia hết cho 11
35n+2+35n+1-35n
=35n.32+35n.31-35n
=35n.9+35n.3-35n
=35n.(9+3-1)
=35n.11 chia hết cho 11
=> 35n+2+35n+1-35n chia hết cho 11
câu a: chứng tỏ rằng n2 + n + 1 không chia hết cho 2
câu b: chứng tỏ rằng n.(n+1) .(5n+1) chia hết cho 6
a)Nếu n=2k(kEN)
thì n2+n+1=4k^2+2k+1(ko chia hết cho 2, vì 1 ko chia hết cho 2)
Nếu n=2k+1(kEN)
thì n2+n+1=n(n+1)+1=(2k+1)(2k+1+1)+1=(2k+1)(2k+2)+1=(2k)(2k+2)+2k+2+1=4k^2+4k+2k+2+1=4k^2+6k+3(ko chia hết cho 2 vì 3 ko chia hết cho 2)
Vậy với mọi nEN thì n2+n+1 ko chia hết cho 2
b)n(n+1)(5n+1)=(n2+n)(5n+1)=5n3+n2+5n2+n
Nếu n=2k(kEN )
thì n(n+1)(5n+1)=10k3+2k2+10k2+2k(chia hết cho 2)
Nếu n=2k+1(kEN)
thì n(n+1)(5n+1)=5(2k+1)3+(2k+1)+5(2k+1)2+2k+1=...................................
tương tự, n=3k;3k+1;3k+2
mỏi tay chết đi được, mấy con số còn bay đi lung tung
1. Cho số nguyên x sao cho x chia cho 7 dư 2. Chứng tỏ rằng 2x+3 chia hết cho 7
2. Chứng minh rằng 2^0+2^1+2^2+2^3+...+2^5n-3+2^5n-2+2^5n-1 chia hết cho 31
1. Cho số nguyên x là 9 (Thỏa mãn x:7, dư 2); 2x+3(giả thuyết)
=> (2.9)+3 = 21 chia hết cho7 (chia hết cho viết bằng ki hiệu nha bạn)
2. 2^0+2^1+2^2+2^3+...+2^5n-3+2^5n-2+2^5-1
= (2^0+2^1+2^2+2^3+2^4)+...+(2^5n-5+2^5n-4+2^5n-3+2^5n-2+2^5n-1)
=(1+2+4+8+16)+...+(2^5n-5+2^5n-4+2^5n-3+2^5n-2+2^5n-1) chia hết cho 31
chứng tỏ rằng:
a, (5n+7)*(4n+6) chia hết cho 2
b,(8n+1)*(6n+5) không chia hết cho 2
a, (5n+7)*(4n+6) = (5n+7).2.(2n+3) chia hết cho 2 b,(8n+1)*(6n+5)
8n là số chẵn nên 8n+1 là số lẻ nên không chia hết cho 2
6n là số chẵn nên 6n+5 là số lẻ nên không chia hết cho 2
vậy (8n+1).(6n+5) là số lẻ không chia hết cho 2
Chứng tỏ 8n+2-5n+2+8n-5n chia hết cho 65 và 120 với mọi số n nguyên dương
Ta có: \(8^{n+2}+8^n-5^{n+2}-5^n\)
\(=8^n\left(64+1\right)-5^n\left(5^2+1\right)\)
\(=8^n\cdot65-5^{n-1}\cdot130⋮65\)
Chứng tỏ rằng:
1) ( 4n + 6) . ( 5n + 7) chia hết cho 2 ( n \(\in\) Z)
ta thấy 4n+6 luôn chia hết cho 2 mà số chia hết cho2 nhân với số nào cũng chia hết cho 2 nên tích chia hết cho 2
Bài 1 : Chứng tỏ rằng :
a : (5n+7) . (4n+6 ) chia hết cho 2 với mọi số tự nhiên
b : (8n+1 ) . 6n+5 ) không chia hết cho 2 với mọi số tự nhiên
a) (5n + 7).(4n + 6) = (5n + 7).2.(2n + 3) chia hết cho 2
b) Do 8n + 1 là số lẻ; 6n + 5 là số lẻ => (8n + 1).(6n + 5) là số lẻ, không chia hết cho 2
chứng tỏ rằng
(5n+7)(4n+6) chia hết cho 2 với mọi số tự nhiên n
Ta có : (5n+7)(4n+6)=(5n+7).4n+(5n+7).6=5n.4n+7.4n+5n.6+7.6=20.n.n+28.n+30.n+42
Vì tích nào trong tổng cũng chia hết cho 2 nên tổng này hay (5n+7)(4n+6) chia hết cho 2 ( điều phsir chững minh)
Chứng tỏ rằng
a, (5n+7)(4n+6) chia hết cho 2 với mọi số tự nhiên n
b,(8n+1)(6n+5) không chia hết cho 2 với mọi số tự nhiên n
a,cách 1: ta có: (5n+7)(4n+6)=(5n+7)(2n+3).2 chia hết cho 2
Vậy (5n+7)(4n+6) chia hết cho 2
Cách 2: Ta thấy:4n+6 có chữ số tận cùng là số chẵn=>(5n+7)(4n+6) có chữ số tận cùng là số chẵn.
mà các số có chữ số tận cùng là số chẵn thì số đó chia het cho
vậy (5n+7)(4n+6) chia het cho (đpcm)
b,Ta thấy :8n+1 co chu so tan cung la so le(vi 8n co chu so tan cung la so chan,ma chan+le=le)
6n+5 co chu so tan cung la so le(vi 6n co chu so tan cung la so chan,ma chan+le=le)
từ 2 dieu tren=>(8n+1)(6n+5) co chu so tan cung la so le
vậy (8n+1)(6n+5) khong chia het cho 2 voi moi stn n
câu a bạn nên làm theo cách 2