Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Jurrychan
Xem chi tiết
bestyorn
Xem chi tiết
zZz Cool Kid_new zZz
14 tháng 4 2019 lúc 21:17

b

\(\left|6+x\right|\ge0;\left(3+y\right)^2\ge0\Rightarrow\left|6+x\right|+\left(3+y\right)^2\ge0\)

Suy ra \(\left|6+x\right|+\left(3+y\right)^2=0\)\(\Leftrightarrow\hept{\begin{cases}6+x=0\\3+y=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=-6\\y=-3\end{cases}}\)

zZz Cool Kid_new zZz
14 tháng 4 2019 lúc 21:17

a

Ta có:\(\left|3x-12\right|=3x-12\Leftrightarrow3x-12\ge0\Leftrightarrow3x\ge12\Leftrightarrow x\ge4\)

\(\left|3x-12\right|=12-3x\Leftrightarrow3x-12< 0\Leftrightarrow3x< 12\Leftrightarrow x< 4\)

Với \(x\ge4\) ta có:

\(3x-12+4x=2x-2\)

\(\Rightarrow5x=10\)

\(\Rightarrow x=2\left(KTMĐK\right)\)

Với  \(x< 4\) ta có:

\(12-3x+4x=2x-2\)

\(\Rightarrow10=x\left(KTMĐK\right)\)

Hồ Minh Tuyết
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 8 2021 lúc 15:38

a: Ta có: \(x\left(x-3\right)-x^2+5=0\)

\(\Leftrightarrow-3x+5=0\)

hay \(x=\dfrac{5}{3}\)

b: Ta có: \(x^2-6x=0\)

\(\Leftrightarrow x\left(x-6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=6\end{matrix}\right.\)

minh chứng 1
Xem chi tiết
Mai Hương Lê Thị
19 tháng 11 2021 lúc 21:26

a. x( x+ 3)= 0 

⇔ x= 0 hoặc x+ 3= 0

⇔ x= 0          x = -3

b. x( 2x− 1)+ 2( 2x− 1) =0 

⇔ ( 2x− 1)(x+ 2) =0

⇔ 2x− 1 =0 hoặc  x+ 2 =0

⇔ 2x       =1          x      = -2

⇔   x       =\(\dfrac{1}{2}\)         x      = -2

 

công chúa bong bóng
Xem chi tiết
phung thi  khanh hop
23 tháng 1 2016 lúc 18:10

cậu chia từng câu ra cho mình nhé

Nguyễn Đức Mạnh
Xem chi tiết
Nguyễn Ngọc k10
Xem chi tiết
『Kuroba ム Tsuki Ryoo...
7 tháng 7 2023 lúc 11:48

`@` `\text {Ans}`

`\downarrow`

`1,`

`x^2 - 9 = 0`

`<=> x^2 = 0 + 9`

`<=> x^2 = 9`

`<=> x^2 = (+-3)^2`

`<=> x = +-3`

Vậy, `S = {3; -3}`

`2,`

`25 - x^2 = 0`

`<=> x^2 = 25 - 0`

`<=> x^2 = 25`

`<=> x^2 = (+-5)^2`

`<=> x = +-5`

Vậy,` S= {5; -5}`

`3,`

`-x^2 + 36 = 0`

`<=> -x^2 = 0 - 36`

`<=> -x^2 = -36`

`<=> x^2 = 36`

`<=> x^2 = (+-6)^2`

`<=> x = +-6`

Vậy, `S= {6; -6}`

`4,`

`4x^2 - 4 = 0`

`<=> 4x^2 = 0+4`

`<=> 4x^2 = 4`

`<=> x^2 = 4 \div 4`

`<=> x^2 = 1`

`<=> x^2 = (+-1)^2`

`<=> x = +-1`

Vậy, `S= {1; -1}`

`@` `\text {Kaizuu lv uuu}`

tien
Xem chi tiết
⭐Hannie⭐
26 tháng 10 2023 lúc 16:57

\(a,\left(x+2\right)^{10}+\left(x+2\right)^8=0\\ \Leftrightarrow\left(x+2\right)^8\left[\left(x+2\right)^2+1\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x+2\right)^8=0\\\left(x+2\right)^2+1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+2=0\\\left(x+2\right)^2=-1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-2\\x\in\varnothing\end{matrix}\right.\\ b,\left(x+3\right)^{10}-\left(x+3\right)^8=0\\ \Leftrightarrow\left(x+3\right)^8\left[\left(x+3\right)^2-1\right]=0\\ \Leftrightarrow\left[{}\begin{matrix}\left(x+3\right)^8=0\\\left(x+3\right)^2-1=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\\left(x+3\right)^2=1\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-3\\x+3=1\\x+3=-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=-2\\x=-4\end{matrix}\right.\)

ling thuy
Xem chi tiết
Nhi Nguyễn
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 11 2023 lúc 5:45

a: \(x^3-4x^2-x+4=0\)

=>\(\left(x^3-4x^2\right)-\left(x-4\right)=0\)

=>\(x^2\left(x-4\right)-\left(x-4\right)=0\)

=>\(\left(x-4\right)\left(x^2-1\right)=0\)

=>\(\left[{}\begin{matrix}x-4=0\\x^2-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x^2=1\end{matrix}\right.\Leftrightarrow x\in\left\{2;1;-1\right\}\)

b: Sửa đề: \(x^3+3x^2+3x+1=0\)

=>\(x^3+3\cdot x^2\cdot1+3\cdot x\cdot1^2+1^3=0\)

=>\(\left(x+1\right)^3=0\)

=>x+1=0

=>x=-1

c: \(x^3+3x^2-4x-12=0\)

=>\(\left(x^3+3x^2\right)-\left(4x+12\right)=0\)

=>\(x^2\cdot\left(x+3\right)-4\left(x+3\right)=0\)

=>\(\left(x+3\right)\left(x^2-4\right)=0\)

=>\(\left(x+3\right)\left(x-2\right)\left(x+2\right)=0\)

=>\(\left[{}\begin{matrix}x+3=0\\x-2=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=2\\x=-2\end{matrix}\right.\)

d: \(\left(x-2\right)^2-4x+8=0\)

=>\(\left(x-2\right)^2-\left(4x-8\right)=0\)

=>\(\left(x-2\right)^2-4\left(x-2\right)=0\)

=>\(\left(x-2\right)\left(x-2-4\right)=0\)

=>(x-2)(x-6)=0

=>\(\left[{}\begin{matrix}x-2=0\\x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)