cho hai đa thức f(X)=AX^2+BX+C VÀ g(X)=CX2+BX+A. chứng minh rằng nếu f(x0)=0 thì g(1/x0)=0
Cho hai đa thức f(x)=ax^2+bx+c và g(x)=cx^2+bx+a.Chứng minh rằng: Nếu f(x0)=0 thì g(1/x0)=0 (với x0 khác 0)
cho hai đa thức f(x)= ax^2+bx+c và g(x)=cx^2+bx+a . cmr nếu f(x0)=0 thì g(1/x0)=0
2) Cho hai đa thức: f(x) = ax2 + bx + c và g(x) = cx2 + bx + a
Chứng minh rằng: Nếu f(x0) = 0 thì g(1/x0) = 0 (với x0 khác 0)
cho hai đa thức: f(x)=ax2 +bx+c và g(x)=cx2 +bx+a. chứng minh rằng : Nếu f(x0)=0 thì g(1/x0)=0( với x0 khác 0 )
cho hai đa thức
f(x) = ax^2 + bx + c
và g(x)=cx^2 + bx^2+a
chứng minh rằng nếu f( x0)=0 thì g\(\left(\frac{1}{x_0}\right)\)= 0
Cho hai đa thức: f(x)=ax2+bx+c và g(x)=cx2+bx+a
Chứng minh rằng: Nếu f(x0)=0 thì g(\(\frac{1}{x_0}\))=0 (với x0≠0)
Cho các nhị thức bậc nhất f(x)=ax+b và g(x)=bx+a.CMR nếu x0 là một nghiệm của f(x)thì 1/x0 là nghiệm của g(x)?
Cho hai đa thức : f(x)\(ax^2+bx+c\) và g(x)= \(cx^2+bx+a\)
Chứng minh rằng: Nếu f(\(_{x_0}\))=0 thì g(\(\dfrac{1}{x_0}\))=0 ( với \(x_0\) khác 0)
Cho các nhị thức bậc nhất f(x) = ax+b và g(x) =bx+a
Cmr: nếu x0 là nghiệm của f(x) thì 1/x0 là nghiệm của g(x)
Nếu x0 là một nghiệm của f(x) thì \(a.x_0+b=0\Rightarrow a=\dfrac{-b}{x_0}\)
Nếu \(x=\dfrac{1}{x_0}\)
\(\Rightarrow\dfrac{b}{x_0}+a=\dfrac{b}{x_0}+\left(-\dfrac{b}{x_0}\right)=0\)
\(\Rightarrowđpcm.\)