Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Võ Thị Ngọc Linh
Xem chi tiết
Bùi Thế Hào
17 tháng 1 2017 lúc 16:53

a) A=4+42+43+...4100 => 4A=42+43+44+...+4101

=> 4A-A=4101-4 <=> 3A=4101-4 <=> 3A-4=4101 =>đpcm

b) Tương tự

lê trần minh quân
24 tháng 9 2017 lúc 8:43

Minh Quân yêu Thanh Hiền

Lê Khánh Vân
Xem chi tiết
Nguyễn Quang Minh
31 tháng 3 2023 lúc 21:11

Akai Haruma
13 tháng 5 2023 lúc 23:45

Lời giải:
$A-1=4+4^2+4^3+...+4^{2020}+4^{2021}$
$4(A-1)=4^2+4^3+4^4+....+4^{2021}+4^{2022}$

$\Rightarrow 4(A-1)-(A-1)=4^{2022}-4$

$3(A-1)=4^{2022}-4$

$\Rightarrow 3A+1=4^{2022}\vdots 4^{2021}$ 

 

lê minh khang
Xem chi tiết
 Hà Trang
Xem chi tiết
Hoàng Ninh
12 tháng 11 2018 lúc 19:48

1 . 

Tính chấtPhép cộngPhép nhân
Giao hoána + b = b +aa . b = b . a
Kết hợp( a + b ) + c = a + (b + c)(a . b) . c = a . ( b . c )
Phân phối của phép nhân với phép cộng( a + b ) . c = a . b + b . c  

2 . Luỹ thừa bậc n của a là tích của n thừa số bằng nhau , mỗi thừa số bằng a

3 . am . an = am + n

am : an = am - n

4 . Ta nói số tự nhiên a chia hết cho số tự nhiên b khi có số tự nhiên q sao cho : a = bq

5 . Đối với biểu thức không có ngoặc :

Ta thực hiện phép tính nâng lên luỹ thừa , rồi đến nhân và chia , cuối cùng là cộng và trừ

Tổng quát : Luỹ thừa -> Nhân và chia -> Cộng và trừ

Đối với biểu thức có dấu ngoặc

Từ ngoặc tròn đến ngoặc vuông rồi cuối cùng đến ngoặc vuông

Tổng quát : ( ) -> [ ] -> { }

Đỗ Thiên Ân
Xem chi tiết
LÊ HÔNG NGOC
Xem chi tiết
Edogawa Conan
8 tháng 11 2018 lúc 20:30

Bài 1 : Ta có : S = 1 + 2 + 22 + 23 + ... + 29

                     2S = 2(1 + 2 + 22 + 23 + ... + 29)

                     2S = 2 + 22 + 23 + ... + 210

                 2S -  S = (2 + 22 + 23 + ... + 210) - (1 + 2 + 22 + 23 + ... + 29)

                        S = 210 - 1 = 28.4 - 1

Vậy S < 5 x 28

LÊ HÔNG NGOC
9 tháng 11 2018 lúc 20:10

Bn có thể giải cho mik bài2 và bài4 đc ko ngay bây giờ nhé

Nguyen Dieu Chau
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 12 2021 lúc 11:07

b: \(A=3\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\)

\(=13\left(3+...+3^{58}\right)⋮13\)

Nguyễn Hoàng Minh
20 tháng 12 2021 lúc 11:09

\(a,\Leftrightarrow2A=8+2^3+2^4+...+2^{21}\\ \Leftrightarrow2A-A=8+2^3+2^4+...+2^{21}-4-2^2-2^3-...-2^{20}\\ \Leftrightarrow A=2^{21}+8-4-2^2=2^{21}\left(đpcm\right)\\ b,A=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{58}+3^{59}+3^{60}\right)\\ A=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{58}\left(1+3+3^2\right)\\ A=\left(1+3+3^2\right)\left(3+3^4+...+3^{58}\right)\\ A=13\left(3+3^4+...+3^{58}\right)⋮13\)

ngô lê vũ
20 tháng 12 2021 lúc 11:10

a,Chứng minh rằng A là một lũy thừa của 2

A=4+2^2+2^3+2^4+......+2^20

b,Chứng tỏ A=3^1+3^2+3^3+.....+3^60 chia hết cho 13

 

 

Nguyễn Hà Phương
Xem chi tiết
Phan Văn Hiếu
8 tháng 8 2016 lúc 17:59

Bài 1

a) 3+ 3+ 3+ 3= 34(1 + 3 + 3+ 33)\

b) a)A = 1 + 3 + 32 +......399 =(1 + 3 +  32 + 33 ) + ...+(396 + 397 + 398 + 399)

                                          =   (1 + 3 +  32 + 33 ) + .. +396(1 + 3 +  32 + 33 )

                                          = 40 + ... + 396 . 40 

                                          = 40 (1 + 3 +...+ 396) chia hết cho 40

Phan Văn Hiếu
8 tháng 8 2016 lúc 18:16

Bài 2 

a)

+)A chia hết cho 6

\(A=5+5^2+5^3+...+5^{2004}\)

\(A=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{2003}+5^{2004}\right)\)

\(A=\left(5+5^2\right)+5^2\left(5+5^2\right)+...+5^{2002}\left(5+5^2\right)\)

\(A=30+5^2.30+...+5^{2002}.30\)

\(A=30\left(1+5^2+...+5^{2002}\right)\)chia hết cho 6

+)A chia hết cho 31

\(A=5+5^2+5^3+...+5^{2004}\)

\(A=\left(5+5^2+5^3\right)+\left(5^4+5^5+5^6\right)+...+\left(5^{2002}+5^{2003}+5^{2004}\right)\)

\(A=\left(5+5^2+5^3\right)+5^3\left(5+5^2+5^3\right)+...+5^{2001}\left(5+5^2+5^3\right)\)

\(A=155+5^3.155+...+5^{2001}.155\)

\(A=155\left(1+5^3+...+5^{2001}\right)\)chia hết cho 31

+) A chia hết cho 156

\(A=5+5^2+5^3+...+5^{2004}\)

\(A=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+...+\left(5^{2001}+5^{2002}+5^{2003}+5^{2004}\right)\)

\(A=\left(5+5^2+5^3+5^4\right)+5^4\left(5+5^2+5^3+5^4\right)+...+5^{2000}\left(5+5^2+5^3+5^4\right)\)

\(A=780+5^4.780+...+5^{2000}.780\)

\(A=780\left(1+5^4+...+5^{2000}\right)\)chia hết cho 156

b)B=165+2^15 chia hết cho 33

ta có 165 chia hết cho 33

mà 215 ko chia hết cho 33

vậy 165+2^15 không chia hết cho 33 hay B không chia hết cho 33.

ngô thị mai
5 tháng 10 2017 lúc 19:12

chứng tỏ A= 1+\(3^1\)+\(3^2\)+....+\(3^{99}\)là B(4) và là B (40).

Quân Triệu Computer
Xem chi tiết