Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ngô Linh
Xem chi tiết
Mai Quỳnh Anh
Xem chi tiết
Hằng Nguyễn
Xem chi tiết
Shiro Nerin
Xem chi tiết
Siêu Phẩm Hacker
7 tháng 1 2019 lúc 22:16

\(a\left(ax-1\right)=x\left(3a-2\right)-1\)

\(\Leftrightarrow a^2x-a=3ax-2x-1\)

\(\Leftrightarrow a^2x-3ax+2x-a+1=0\)

\(\Leftrightarrow\left(a^2-3a+2\right)x-a+1=0\)

Phương trình có nghiệm duy nhất \(\Leftrightarrow a^2-3a+2\ne0\)

 \(\Delta\ne\left(-3\right)^2-4.1.2\ne1\)

\(\sqrt{\Delta}\ne\sqrt{1}\ne1\)

\(a_1\ne\frac{3+1}{2.1}\ne2\)

\(a_2\ne\frac{3-1}{2.1}\ne1\)

Vậy \(a\ne1\) và \(a\ne2\) thì pt có nghiệm duy nhất 

Quỳnh Chi
15 tháng 2 2020 lúc 10:35

Trl :

        Bạn kia trả lời đúng rồi nhoa :)))

Hok tốt 

~ nhé bạn ~

Khách vãng lai đã xóa
trieuhandu
Xem chi tiết
Nguyễn Đại Nghĩa
Xem chi tiết
chikaino channel
19 tháng 5 2018 lúc 18:27

bạn ơi ... cái này ...... bạn làm đc mà thế m vào lập delta thôi

chikaino channel
19 tháng 5 2018 lúc 18:55

Phương trình \(x^2+\left(2m+1\right)x-n+3=0\)0

Khi m=2 thì

phương trình thành \(x^2+5x-n+3=0\)

(tìm a,b,c)

Lập \(\Delta=b^2-4ac\)

\(=25+4n-12\)

\(=4n+13\)

để pt có nghiệm thì \(n\ge\frac{-13}{4}\)

Vì phương trình có nghiệm theo viet 

\(\hept{\begin{cases}x_1+x_2=-5\\x_1.x_2=-n+3\end{cases}}\)

để phương trình có 2 nghiệm dương thì tổng của chúng phải lớn hơn 0 mà theo viet ta thấy là âm

Nên ko có giá trị nguyên dương nào của n để pt có 2 nghiệm dương

Nguyễn Đại Nghĩa
19 tháng 5 2018 lúc 18:57

mình chưa hiêu nên mình cho sai xin lỗi bn. nhứng xã có 2 người cho bn đúng

Blue Moon
Xem chi tiết
Linh_Chi_chimte
30 tháng 11 2018 lúc 22:32

PT có nghiệm chung khi \(x^2+ax+8=x^2+x+a\)

                                    \(\Leftrightarrow ax+8-x-a=o\)

                                     \(\Leftrightarrow a\left(x-1\right)-\left(x-1\right)+7=0\)

                                     \(\Leftrightarrow\left(x-1\right)\left(a-1\right)=-7\)

-7=(-1).7=(-7).1

TH1\(\hept{\begin{cases}x-1=-1\\a-1=7\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=0\\a=8\end{cases}}\)thế vào \(x^2+x+a=0\)(thế vào pt trên cx đc nha) có: 8=0(vô lý) loại

TH2 \(\hept{\begin{cases}x-1=-7\\a-1=1\end{cases}}\)(giải như trên) (loại)

TH3\(\hept{\begin{cases}x-1=7\\a-1=-1\end{cases}}\)(loại)

Th4\(\hept{\begin{cases}x-1=1\\a-1=-7\end{cases}}\)=>\(\hept{\begin{cases}x=2\\a=-6\end{cases}}\)thế vào \(x^2+x+a=0\) có  \(2^2+2-6=0\) thỏa mãn

Vậy với a=-6 thì 2 pt có nghiệm chng

    

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
4 tháng 11 2019 lúc 6:15

Từ PT (1) ta có: y = (a + 1)x – (a + 1) (*) thế vào PT (2) ta được:

x + ( a – 1 ) [ ( a + 1 ) x – ( a + 1 ) ] = 2   x + ( a 2 – 1 ) x – ( a 2 – 1 ) = 2

⇔ a 2 x = a 2 + 1   ( 3 )

Với a ≠ 0, phương trình (3) có nghiệm duy nhất x = a 2 + 1 a 2 . Thay vào (*) ta có:

y = ( a + 1 ) a 2 + 1 a 2 − ( a + 1 ) = a + 1 a 2 + 1 − a 2 a 2 + 1 a 2 = a 3 + a + a 2 + 1 − a 3 − a 2 a 2 = a + 1 a 2  

Suy ra hệ phương trình đã cho có nghiệm duy nhất ( x ;   y ) = a 2 + 1 a 2 ; a + 1 a 2

Hệ phương trình có nghiệm nguyên: x ∈ ℤ y ∈ ℤ ⇔ a 2 + 1 a 2 ∈ ℤ a + 1 a 2 ∈ ℤ ( a ∈ ℤ )  

Điều kiện cần: x = a 2 + 1 a 2 = 1 + 1 a 2 ∈ ℤ ⇔ 1 a 2 ∈ ℤ mà a 2 > 0   ⇒ a 2 = 1

⇔ a = ± 1 ( T M   a ≠ 0 )

Điều kiện đủ:

a = −1 ⇒  y = 0  (nhận)

a = 1 y = 2  (nhận) 

Vậy a = ± 1 hệ phương trình đã cho có nghiệm nguyên.

Đáp án: D

Nguyễn Vân Hương
Xem chi tiết
Khanh Nguyễn Ngọc
11 tháng 9 2020 lúc 19:16

Xét \(\Delta=p^2+4ap\inℕ^∗,\forall a,p\inℕ^∗\)

Để phương trình nhận nghiệm hữu tỉ thì \(\sqrt{\Delta}\)Phải là hữu tỉ hay có thể khẳng định rằng \(\Delta\)phải là số chính phương.

Ở đây ta chú ý rằng nếu x là số nguyên tố thì mọi số chính phương chia hết cho x buộc phải chia hết cho x2

( Điều này hiển nhiên khỏi chứng minh)

Vì \(\Delta⋮p\)mà p là số nguyên tố \(\Rightarrow\Delta=p^2+4ap⋮p^2\Rightarrow4a⋮p\)

---> Đặt \(4a=kp,k\inℕ^∗\)---> Thế vào \(\Delta\)

\(\Rightarrow\Delta=p^2+kp^2=p^2\left(1+k\right)\)là số chính phương khi và chỉ khi (1+k) là số chính phương

---> Đặt \(1+k=n^2\Rightarrow k=n^2-1,n\inℕ^∗\)---> Thế vào a

\(\Rightarrow a=\frac{\left(n^2-1\right)p}{4}\)

Thử lại: \(\Delta=p^2+4ap=p^2+\left(n^2-1\right)p^2=p^2.n^2=\left(pn\right)^2\)---> Là số chính phương

Kết luận: bla bla bla bla...... :)))

Khách vãng lai đã xóa