Nhờ các bạn giải giùm mình 5 bài luôn nhé! Mình đang cần gấp lắm! Mình cảm ơn.
1. Cho x,y,z khác 0 và (x+y+ z)^2 = x^2+y^2+z^2.
C/m 1/x^3 + 1/y^3 + 1/z^3= 3/x*y*z.
2. Giải phương trình:
x^3 + 3ax^2 + 3(a^2 -bc)x +a^3+b^3 +c^3
(Ẩn x)
3. Tìm nghiệm nguyên của phương trình:
(x+y)^3=(x-2)^3 + (y+2)^3 + 6
4. Tìm nghiệm nguyên dương thỏa mãn cả hai phương trình
x^3 + y^3 + 3xyz= z^3
z^3=(2x+2y)^3
Giúp mk giải bài này vs @@ . Ai giải chi tiết mk sẽ tick cho <3 <3
Dùng phương pháp bất đẳng thức để giải phương trình sau (x^2+1)(y^2+4)(z^2+9)=48xyz(x;y;z>0)
Giải phương trình nghiệm nguyên:
1)\(5\left(x+y+z\right)+15=2xyz\) \(\left(x;y;z\in Z^+\right)\)
2) \(y\left(x-1\right)=x^2+2\)
3) \(2^x-3^y=7\) \(\left(x;y\in Z^+\right)\)
Tìm xy biết xy+2x-5y=0( x, y thuộc Z)
Tìm m để hai phương trình sau tương đương: 2x^2-8x+15=0 và (2x-6)(mx-3m+1)=0
chứng minh phương trình a(x-a^2+1)=a^2+2-2x luôn có nghiệm dương với a khác -2
Giải phương trình:
\(x\left(x+1\right)\left(x+7\right)\left(x+8\right)=y^2\left(x;y\in Z\right)\)
Biết \(\left(x;y;z\right)\) là nghiệm nguyên dương của phương trình \(x^2+y^2+z^2=xy+3y+2z-4\).Tìm x,y,z
Tìm các số nguyên x, y, z thỏa mãn phương trình sau:
\(7x^2+3y^2+z^2-14x+2x-18y+35=0\)
1.cho x thuộc Z, chứng minh rằng x^200+x^100+1 chia het cho x^4+x^2+1
2.tìm các số tự nhiênx,y,z thỏa mãn phương trình:2016^x+2017^y=2018^z