tìm x thuọc Z biết: a, x^2+4x+3=0. b,x^2+2x+1=0
Bài 4 : Tìm x , biết:
a) 5(x+3) - 2x(3+z) = 0
b) 4x( x-2014) - x + 2014 = 0
c) (x+1)2 = x+1
\(b)4x\left(x-2014\right)-\left(x-2014\right)=0\)
\(\left(4x-1\right)\left(x-2014\right)=0\)
\(\Leftrightarrow TH1:4x-1=0\)
\(4x=1\)
\(x=\frac{1}{4}\)
\(TH2:x-2014=0\)
\(x=2014\)
Vậy \(x\in\left\{\frac{1}{4};2014\right\}\)
\(b,4x\left(x-2014\right)-x+2014=0\)
\(\Leftrightarrow\left(x-2014\right)\left(4x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=2014\\x=\frac{1}{4}\end{cases}}\)
\(c,\left(x+1\right)^2=x+1\)
\(\Leftrightarrow\left(x+1\right)x=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=-1\end{cases}}\)
\(c)\left(x+1\right)^2-\left(x+1\right)=0\)
\(\left(x-1-1\right)\left(x+1\right)=0\)
\(\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow TH1:x-2=0\)
\(x=2\)
\(TH2:x+1=0\)
\(x=-1\)
Vậy \(x\in\left\{-1;2\right\}\)
Tìm x biết
a) 25x^2 -1-(5x-1)(x+2) = 0
b) (2x-3)-(3-2x)(x-1) = 0
c) 9 -4x^2-(6+4x)(x-5) = 0
b) ( 2x - 3 ) - ( 3 - 2x )( x - 1 ) = 0
<=> ( 2x - 3 ) + ( 2x - 3 )( x - 1 ) = 0
<=> ( 2x - 3 )( 1 + x - 1 ) = 0
<=> x( 2x - 3 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}}\)
Vậy .....
a, 25x^2 - 1 - (5x -1)(x+2)=0
=> (5x)^2 - 1 + (5x-1)(x+2) = 0
=> (5x-1)(5x+1) + (5x-1)(x+2) = 0
=> (5x-1)(5x+1+x+2) = 0
=> (5x-1)(6x+3) = 0
=> \(\orbr{\begin{cases}5x-1=0\\6x+3=0\end{cases}}\)
a) 25x2 - 1 - ( 5x - 1 )( x + 2 ) = 0
<=> ( 5x - 1 )( 5x + 1 ) - ( 5x - 1 )( x + 2 ) = 0
<=> ( 5x - 1 )( 5x + 1 - x - 2) = 0
<=> ( 5x - 1 )( 4x - 1 ) = 0
\(\Leftrightarrow\orbr{\begin{cases}5x-1=0\\4x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=\frac{1}{4}\end{cases}}}\)
Vậy .......
Bài 1. Tìm x, y, z biết
a) 4x-5y=0 và 3x-2y=35
b) x/5=y/4 và x^3+ y^3 = 91
c) x/2=y/3 và x.y-6 = 0
d) x-1/3 = y-2/4 = x-3/5 và x+y+z= 30
Bài 2 : tìm x
a) 52/2x-1 = 13/30
b) 2x-3/x+1 = 4/7
c) 2x-3/3 = 27/2x.3
Tìm x biết:
a) x 2 + 3 x = 0 b) x ( 2x − 1) + 4x − 2=0 c) ( x 2 + 2 x )2 − 2 x 2 − 4 x = 3
a. x( x+ 3)= 0
⇔ x= 0 hoặc x+ 3= 0
⇔ x= 0 x = -3
b. x( 2x− 1)+ 2( 2x− 1) =0
⇔ ( 2x− 1)(x+ 2) =0
⇔ 2x− 1 =0 hoặc x+ 2 =0
⇔ 2x =1 x = -2
⇔ x =\(\dfrac{1}{2}\) x = -2
cho hai đơn thức A=(-2x^5 y^3)^2 và B=(4x^2 z^2)^3.Tìm x, y, z biết A+B=0
tìm x biết
a, x(2x-7)-4x+14=0
b, x(x-1)+2x-2=0
c, 2x^3+3x^2+2x+3=0
d, x^3+6x^2+11x+6=0
a) x(2x-7)-4x+14=0
=>x(2x-7)-2(2x-7)=0
=>(x-2)(2x-7)=0
=>x-2=0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
b, x(x-1)+2x-2=0
=>x(x-1)+2(x-1)=0
=>(x+2)(x-1)=0
=>x+2=0 hoặc x-1=0
=>x=-2 hoặc x=1
c, 2x^3+3x^2+2x+3=0
=>x2(2x+3)+2x+3=0
=>(x2+1)(2x+3)=0
=>x2+1=0 hoặc 2x+3=0
Vì x2+1>0 với mọi x ->vô nghiệm
=>2x+3=0 =>x=-3/2
d, x^3+6x^2+11x+6=0
=>x3+3x3+2x+3x2+3x3+6=0
=>x(x2+3x+2)+3(x2+3x+2)=0
=>(x2+3x+2)(x+3)=0
=>[x2+x+2x+2](x+3)=0
=>[x(x+1)+2(x+1)](x+3)=0
=>(x+1)(x+2)(x+3)=0
=>x+1=0 hoặc x+2=0 hoặc x+3=0
=>x=-1 hoặc x=-2 hoặc x=-3tìm x biết
a, x(2x-7)-4x+14=0
b, x(x-1)+2x-2=0
c, 2x^3+3x^2+2x+3=0
d, x^3+6x^2+11x+6=0
a) x(2x-7)-4x+14=0
=>x(2x-7)-2(2x-7)=0
=>(x-2)(2x-7)=0
=>x-2=0 hoặc 2x-7=0
=>x=2 hoặc x=7/2
b, x(x-1)+2x-2=0
=>x(x-1)+2(x-1)=0
=>(x+2)(x-1)=0
=>x+2=0 hoặc x-1=0
=>x=-2 hoặc x=1
c, 2x^3+3x^2+2x+3=0
=>x2(2x+3)+2x+3=0
=>(x2+1)(2x+3)=0
=>x2+1=0 hoặc 2x+3=0
Vì x2+1>0 với mọi x ->vô nghiệm
=>2x+3=0 =>x=-3/2
d, x^3+6x^2+11x+6=0
=>x3+3x3+2x+3x2+3x3+6=0
=>x(x2+3x+2)+3(x2+3x+2)=0
=>(x2+3x+2)(x+3)=0
=>[x2+x+2x+2](x+3)=0
=>[x(x+1)+2(x+1)](x+3)=0
=>(x+1)(x+2)(x+3)=0
=>x+1=0 hoặc x+2=0 hoặc x+3=0
=>x=-1 hoặc x=-2 hoặc x=-3
tau cung bui ma chu mi giup tao roi cam on nhe
I) THỰC HIỆN PHÉP TÍNH a) 2x(x^2-4y) b)3x^2(x+3y) c) -1/2x^2(x-3) d) (x+6)(2x-7)+x e) (x-5)(2x+3)+x II phân tích đa thức thành nhân tử a) 6x^2+3xy b) 8x^2-10xy c) 3x(x-1)-y(1-x) d) x^2-2xy+y^2-64 e) 2x^2+3x-5 f) 16x-5x^2-3 g) x^2-5x-6 IIITÌM X BIẾT a)2x+1=0 b) -3x-5=0 c) -6x+7=0 d)(x+6)(2x+1)=0 e)2x^2+7x+3=0 f) (2x-3)(2x+1)=0 g) 2x(x-5)-x(3+2x)=26 h) 5x(x-1)=x-1 IV TÌM GTNN,GTLN. a) tìm giá trị nhỏ nhất x^2-6x+10 2x^2-6x b) tìm giá trị lớn nhất 4x-x^2-5 4x-x^2+3
Giải như sau.
(1)+(2)⇔x2−2x+1+√x2−2x+5=y2+√y2+4⇔(x2−2x+5)+√x2−2x+5=y2+4+√y2+4⇔√y2+4=√x2−2x+5⇒x=3y(1)+(2)⇔x2−2x+1+x2−2x+5=y2+y2+4⇔(x2−2x+5)+x2−2x+5=y2+4+y2+4⇔y2+4=x2−2x+5⇒x=3y
⇔√y2+4=√x2−2x+5⇔y2+4=x2−2x+5, chỗ này do hàm số f(x)=t2+tf(x)=t2+t đồng biến ∀t≥0∀t≥0
Công việc còn lại là của bạn !
\(\left(x+6\right)\left(2x+1\right)=0\)
<=> \(\orbr{\begin{cases}x+6=0\\2x+1=0\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-6\\x=-\frac{1}{2}\end{cases}}\)
Vậy....
hk tốt
^^
Tìm x,y,z biết: a) x^2+y^2-4x+4y+8=0 b) 5x^2-4xy+y^2=0 c) x^2+2y^2+z^2-2xy-2y-4z+5=0 d) 3x^2+3y^2+3xy-3x+3y+3=0 e) 2x^2+y^2+2z^2-2xy-2xz+2yz-2z-2z-2x+2=0
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
d)3x2+3y2+3xy-3x+3y+3=0
⇔ 6x2+6y2+6xy-6x+6y+6=0
⇔ 3(x+y)2+3(x-1)2+3(y+1)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x+y=0\\x-1=0\\y+1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-1\end{matrix}\right.\)