Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Mai Nguyễn Bảo Ngọc
Xem chi tiết
Mai Nguyễn Bảo Ngọc
5 tháng 7 2017 lúc 17:26

Ace Legona giúp vs ạ bài 1 thui cx đc

Phạm Thị Thanh Huyền
Xem chi tiết
Nobi Nobita
30 tháng 4 2020 lúc 15:52

2. \(\left(x^2+x\right)\left(x+2\right)-15y=x\left(x+1\right)\left(x+2\right)-15y\)

Vì \(x\)\(x+1\)và \(x+2\)là 3 số nguyên liên tiếp

\(\Rightarrow x\left(x+1\right)\left(x+2\right)⋮3\)

mà \(15y⋮3\)\(\Rightarrow x\left(x+1\right)\left(x+2\right)-15y⋮3\)

hay \(\left(x^2+x\right)\left(x+2\right)-15y⋮3\)( đpcm )

Khách vãng lai đã xóa
Phạm Thị Thanh Huyền
3 tháng 5 2020 lúc 18:39

Mình cảm ơn ạ !!!

Khách vãng lai đã xóa
Uchiha Itachi
Xem chi tiết
Akai Haruma
24 tháng 8 2020 lúc 18:30

Lời giải:

Từ điều kiện đề bài suy ra $zx+zy=xy$

Khi đó:

$x^2+y^2+z^2=(x+y)^2-2xy+z^2=(x+y)^2+z^2-2(zx+zy)=(x+y)^2+z^2-2z(x+y)=(x+y-z)^2$

$\Rightarrow \sqrt{x^2+y^2+z^2}=|x+y-z|$

Vì $x,y,z$ là các số hữu tỉ nên $\sqrt{x^2+y^2+z^2}=|x+y-z|$ là số hữu tỉ (đpcm)

P/s: Bạn chú ý lần sau gõ đề bằng công thức toán.

Kudo Shinichi
Xem chi tiết
Aki Zui
Xem chi tiết
Die Devil
12 tháng 9 2016 lúc 21:43

bbbbbbbbb

Chàng trai cô đơn nơi cu...
23 tháng 6 2018 lúc 15:32

ccccccccc

Trang-g Seola-a
Xem chi tiết
Nguyen Nhat Minh
Xem chi tiết
Nguyễn Linh Chi
14 tháng 3 2019 lúc 11:28

x, y là số hữu tỉ khác 0 

Đặt \(x=\frac{a}{b},y=\frac{c}{d}\)vs (a, b)=1, (c, d)=1 và a, b, c, d khác 0 và  a, b, c, d nguyên, ad+bc khác 0  vì x+y khác 0

Xét 

A=\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{\left(x+y\right)^2}=\)\(\frac{y^2+x^2}{\left(xy\right)^2}+\frac{1}{\left(x+y\right)^2}=\frac{\left(x^2+y^2\right)\left(x^2+y^2+2xy\right)+\left(xy\right)^2}{\left(xy\right)^2\left(x+y\right)^2}\)

\(=\frac{\left(x^2+y^2\right)^2+2\left(x^2+y^2\right)xy+\left(xy\right)^2}{\left[xy\left(x+y\right)\right]^2}=\frac{\left[\left(x^2+y^2\right)+xy\right]^2}{\left[xy\left(x+y\right)\right]^2}=\left[\frac{x^2+y^2+xy}{xy\left(x+y\right)}\right]^2\)

\(=\left(\frac{a^2d^2+b^2c^2+abcd}{ac\left(ad+bc\right)}\right)^2\)là bình phương của một số hữu tỉ 

Nguyễn Khắc Quang
Xem chi tiết
Trịnh Ngọc Hà
Xem chi tiết