1. Với x, y là những số nguyên. Chứng minh rằng (p+1)(q+1) chia hết cho 4.
2. Với x, y là những số nguyên. Chứng minh rằng (x^2+x)(x+2) - 15y chia hết cho 3.
a)Tìm 3 số hữu tỉ x sao cho: x.(x-1/3)<0
b)Tìm 2 số hữu tỉ x và y (y # 0) sao cho: x+y=x.y=x:y
a)Tìm 3 số hữu tỉ x sao cho: x.(x-1/3)<0
b)Tìm 2 số hữu tỉ x và y (y # 0) sao cho: x+y=x.y=x:y
cho 2 số hữu tỉ x,y mà x+y=2.chứng minh rằng x*ynho hơn hoặc bằng 1
Bài 1: Cho đa thức P(x) = ax2+bx+c với a;b;c là các số nguyên. Biết rằng giá trị của đa thức chia hết cho 3 với mọi giá tri nguyên của x . Chứng minh rằng a;b;c đều chia hết cho 3
Bài 2:Tìm các cặp số nguyên sao cho x2+xy+y2=x2+y2
cho x,y là các số nguyên thỏa mãn:(x^2+1)chia hết cho(xy +1). Chứng minh (y^2+1) chia hết cho (xy+1)
cho p là số nguyên dạng p= 4k +3 . Gỉa sử các số nguyên x,y thỏa mãn x^2+y^2 chia hết cho p. chứng minh x và y đều chia hết cho p
Cho \(x;y\) là các số hữu tỉ thoả mãn đẳng thức \(x^2+y^2+\left(\frac{xy+1}{x+y}\right)^2=2\). Chứng minh rằng \(\sqrt{1+xy}\) là một số hữu tỉ.
a,Chứng minh nếu m và n là 2 stn thì B=(m+2n+3).(3m-2n-2) là số chẵn
b,cho x,y thuộc Z
A=3x(x-y)và B=y2-x2 biết x-y chia hết cho 7
chứng minh A-B chia hết cho 7