Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Thị Phương Anh
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 12 2022 lúc 23:48

a: OH*OA=OB^2=R^2

b: ΔOCD cân tại O

mà OM là trung tuyến

nên OM vuông góc với CD

Xét tứ giác OMBA có

góc OMA=góc OBA=90 độ

nên OMBA là tứ giác nội tiếp

c: Xét ΔOHE vuông tại H và ΔOMA vuông tại M có

góc MOA chung

Do đó: ΔOHE đồng dạng với ΔOMA

=>OH/OM=OE/OA

=>OM*OE=OH*OA=R^2=OC^2=OD^2

=>ΔODE vuông tại D

=>DE là tiếp tuyến của (O)

Hà Trung Hải
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 1 2023 lúc 20:00

a: Xét ΔOBA vuông tại B có BH là đường cao

nên OH*OA=OB^2=R^2

b: Xét ΔABC và ΔADB có

góc ABC=góc ADB

góc BAC chung

Do đó; ΔABCđồng dạng với ΔADB

=>AB/AD=AC/AB

=>AB^2=AD*AC

=>AD*AC=AH*AO

Nguyễn Nguyên Khánh
Xem chi tiết

a: Xét tứ giác ABOC có \(\widehat{ABO}+\widehat{ACO}=90^0+90^0=180^0\)

nên ABOC là tứ giác nội tiếp

=>A,B,O,C cùng thuộc một đường tròn

b: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AO là đường trung trực của BC

=>AO\(\perp\)BC tại trung điểm H của BC

Gọi K là giao điểm của OS và ED

Xét (O) có

SE,SD là các tiếp tuyến

Do đó: SE=SD

=>S nằm trên đường trung trực của ED(3)

Ta có: OE=OD

=>O nằm trên đường trung trực của ED(4)

Từ (3) và (4) suy ra SO là đường trung trực của ED

=>SO\(\perp\)ED tại trung điểm K của ED

Xét ΔOBA vuông tại B có BH là đường cao

nên \(OH\cdot OA=OB^2=R^2\left(5\right)\)

Xét ΔODS vuông tại D có DK là đường cao

nên \(OK\cdot OS=OD^2=R^2\left(6\right)\)

Từ (5) và (6) suy ra \(OH\cdot OA=OK\cdot OS\)

=>\(\dfrac{OH}{OK}=\dfrac{OS}{OA}\)

Xét ΔOHS và ΔOKA có

\(\dfrac{OH}{OK}=\dfrac{OS}{OA}\)

góc HOS chung

Do đó: ΔOHS đồng dạng với ΔOKA

=>\(\widehat{OHS}=\widehat{OKA}\)

=>\(\widehat{OHS}=90^0\)

=>HO\(\perp\)SH tại H

mà HO\(\perp\)BH tại H

và SH,BH có điểm chung là H

nên S,H,B thẳng hàng

mà H,B,C thẳng hàng

nên S,B,H,C thẳng hàng

=>S,B,C thẳng hàng

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 3 2018 lúc 6:42

a)  Chứng minh tứ giác ABOC nội tiếp được đường tròn.

A B O ^ = 90 0 A C O ^ = 90 0 A B O ^ + A C O ^ = 180 0

=> tứ giác ABOC nội tiếp được đường tròn.

b)  Vẽ cát tuyến ADE  của (O) sao cho ADE  nằm giữa 2 tia AO, AB; D, E Î (O) và D nằm giữa A, E. Chứng minh  A B 2 = A D . A E .

Tam giác ADB đồng dạng với tam giác ABE

⇒ A B A E = A D A B ⇔ A B 2 = A D . A E

c)  Gọi F là điểm đối xứng của D qua AO, H là giao điểm của AO và BC. Chứng minh: ba điểm E, F, H  thẳng hàng.

Ta có  D H A ^ = E H O ^

nên  D H A ^ = E H O ^ = A H F ^ ⇒ A H E ^ + A H F ^ = 180 0 ⇒ 3 điểm E, F, H  thẳng hàng.

Nguyễn Việt Hùng
19 tháng 5 2022 lúc 8:56

Có 1 phần câu trả lời ở đây.

Giải toán: Bài hình trong đề thi HK2 Lớp 9 | Rất phức tạp. - YouTube

Song Eun Yong
Xem chi tiết
Gia Bảo Đinh
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 3 2023 lúc 20:30

Xét (O) có

AB,AC là tiếp tuyến

=>AB=AC
mà OB=OC
nên OA là trung trực của BC

=>OA vuông góc BC tại H

=>AH*AO=AB^2

Xet ΔABD và ΔAEB có

góc ABD=góc AEB

góc BAD chung

=>ΔABD đồng dạng với ΔAEB

=>AB^2=AD*AE=AH*AO

=>AD/AO=AH/AE

=>ΔADH đồng dạng với ΔAOE
=>góc ADH=góc AOE

=>góc DHO+góc DEO=180 độ

=>DEOH nội tiếp

=>góc EHO=góc EDO

Công Huy Nguyễn
Xem chi tiết
Lê Ngọc Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 12 2022 lúc 23:48

a: OH*OA=OB^2=R^2

b: ΔOCD cân tại O

mà OM là trung tuyến

nên OM vuông góc với CD

Xét tứ giác OMBA có

góc OMA=góc OBA=90 độ

nên OMBA là tứ giác nội tiếp

c: Xét ΔOHE vuông tại H và ΔOMA vuông tại M có

góc MOA chung

Do đó: ΔOHE đồng dạng với ΔOMA

=>OH/OM=OE/OA

=>OM*OE=OH*OA=R^2=OC^2=OD^2

=>ΔODE vuông tại D

=>DE là tiếp tuyến của (O)

mynameisbro
Xem chi tiết
Nguyễn Lê Phước Thịnh
29 tháng 12 2023 lúc 8:56

a:

loading...

b: Xét (O) có

AB,AC là các tiếp tuyến

Do đó: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: OB=OC

=>O nằm trên đường trung trực của BC(2)

Từ (1) và (2) suy ra AO là đường trung trực của BC

=>AO\(\perp\)BC

c: Xét (O) có

ΔBCN nội tiếp

BN là đường kính

Do đó: ΔBCN vuông tại C

=>BC\(\perp\)CN

Ta có: BC\(\perp\)CN

BC\(\perp\)OA

Do đó: OA//CN

ma gaming
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 3 2023 lúc 18:55

loading...