\(\left(\frac{3}{\frac{4}{32}}x-1\right)5=243\)( Tất cả trên 32 nhé! 3 phần 4 nhân x trừ 1 tất cả trên 32 nhé
\(\left(\dfrac{3}{\dfrac{4}{32}}x-1\right)^5=243\) ( 3 phần 4 nhân x trừ 1 tất cả trên 32 nhé)
\(\Leftrightarrow\left(3:\dfrac{4}{32}\cdot x-1\right)^5=243\)
\(\Leftrightarrow\left(24x-1\right)^5=243\)
=>24x-1=3
=>24x=4
hay x=1/6
Giải phương trình: xin lỗi vì mình không biết kí hiệu phân số ở đâu nên mình phải viết tất cả trên nhé:
1) 3 ( x - 2 ) - 1 tất cả phần 3, trừ đi x + 1 = 2 - 5 ( x - 1 ) tất cả trên 2.
2) 3x2 + 27 = 0
3) 2 - x tất cả trên 2008, trừ 1 = 1 - x tất cả trên 2009, trừ x trên 2010
4) 4 ( x - 3 ) 2 = 9 ( 2 - 3x )2
5) x + 1 trên x - 1, cộng x2 + 3x - 2 tất cả trên 1 - x2 = x - 1 trên x + 1
6) x + 97 trên 125, trừ đi x - 7 trên 21 = x - 77 trên 49, trừ x - 63 trên 35
7) một số tự nhiên co 2 chữ số. Chữ số hàng chục gấp đôi chữ số hàng đơn vị. Nếu viết thêm chữ số 9 vào giữa 2 chữ số ấy thì được chữ số mới lớn hơn số ban đầu 821 đơn vị. Tìm số ban đầu.
Cảm ơn mọi ng đã giúp mình nhé !
Đề bài
Giải mỗi bất phương trình sau:
a) \({3^x} > \frac{1}{{243}}\)
b) \({\left( {\frac{2}{3}} \right)^{3x - 7}} \le \frac{3}{2}\)
c) \({4^{x + 3}} \ge {32^x}\)
d) \(\log (x - 1) < 0\)
e) \({\log _{\frac{1}{5}}}(2x - 1) \ge {\log _{\frac{1}{5}}}(x + 3)\)
f) \(\ln (x + 3) \ge \ln (2x - 8)\)
\(a,3^x>\dfrac{1}{243}\\ \Leftrightarrow3^x>3^{-5}\\ \Leftrightarrow x>-5\\ b,\left(\dfrac{2}{3}\right)^{3x-7}\le\dfrac{3}{2}\\ \Leftrightarrow3x-7\le1\\ \Leftrightarrow3x\le8\\ \Leftrightarrow x\le\dfrac{8}{3}\\ c,4^{x+3}\ge32^x\\ \Leftrightarrow2^{2x+6}\ge2^{5x}\\ \Leftrightarrow2x+6\ge5x\\ \Leftrightarrow3x\le6\\ \Leftrightarrow x\le2\)
d, Điều kiện: x > 1
\(log\left(x-1\right)< 0\\ \Leftrightarrow x-1< 1\\ \Leftrightarrow1< x< 2\)
e, Điều kiện: \(x>\dfrac{1}{2}\)
\(log_{\dfrac{1}{5}}\left(2x-1\right)\ge log_{\dfrac{1}{5}}\left(x+3\right)\\ \Leftrightarrow2x-1\ge x+3\\ \Leftrightarrow x\ge4\)
f, Điều kiện: x > 4
\(ln\left(x+3\right)\ge ln\left(2x-8\right)\\ \Leftrightarrow x+3\ge2x-8\\\Leftrightarrow4< x\le11\)
\(\left(4\frac{1}{6}x^2-\frac{2}{3}\right)\left(-0,75x-\frac{21}{32}\right)\left(\frac{5}{6}\left|x\right|-3\frac{1}{3}\right)\)\(\left(4\frac{1}{2}x^4+1\frac{1}{3}x\right)=0\)
\(\left(4\frac{1}{6}x^2-\frac{2}{3}\right)\left(-0,75x-\frac{21}{32}\right)\left(\frac{5}{6}\left|x\right|-3\frac{1}{3}\right)\)\(\left(4\frac{1}{2}x^4+1\frac{1}{3}x\right)=0\)
Cho hàm số \(f\left(x\right)=\frac{1}{5}m^2x^5-\frac{1}{3}mx^3+10x^2-\left(m^2-m-20\right)x\)Gọi S là tập hợp tất cả các giá trị của tham số m để hàm số đồng biến trên R. Tổng giá trị của tất cả các phần tử thuộc S bằng :
A. 3/2
B. -2
C. 5/2
D. 1/2
\(f'\left(x\right)=m^2x^4-mx^2+20x-\left(m^2-m-20\right)\)
Để hàm số đồng biến trên \(ℝ\)thì \(f'\left(x\right)\ge0,\)với mọi \(x\inℝ\).
Mà ta thấy \(f'\left(-1\right)=m^2-m-20-\left(m^2-m-20\right)=0\)
do đó \(x=-1\)là một điểm cực trị của hàm số \(f'\left(x\right)\).
Ta có: \(f''\left(x\right)=4m^2x^3-2mx+20\)
\(f''\left(-1\right)=0\Leftrightarrow-4m^2+2m+20=0\Leftrightarrow\orbr{\begin{cases}m=\frac{5}{2}\\m=-2\end{cases}}\).
Thử lại.
Với \(m=\frac{5}{2}\): \(f''\left(x\right)=25x^3-5x+20\)
\(f''\left(x\right)=0\Leftrightarrow x=-1\)
\(f'\left(-1\right)=0\)
do đó \(f'\left(x\right)\ge0\)thỏa mãn.
Với \(m=-2\): \(f''\left(x\right)=16x^3+4x+20\)
\(f''\left(x\right)=0\Leftrightarrow x=-1\).
\(f'\left(-1\right)=0\)
do đó \(f'\left(x\right)\ge0\)thỏa mãn.
Vậy tổng các giá trị của \(m\)là: \(\frac{5}{2}+\left(-2\right)=\frac{1}{2}\).
Chọn D.
Xác định các tập hợp sau bằng cách nêu tính chất đặc trưng của tất cả các phần tử của nó:
A= { 1;7;-3;6}
B= {\(\frac{1}{2};\:\frac{3}{4};\frac{5}{8};\frac{7}{16};\frac{9}{32}\)}
Cách nêu tính chất đặc trưng:
A=\(\left\{x/\left(x^2+2x-3\right)\left(x^2-13x+42\right)\right\}\)
B=\(\left\{\frac{2x+1}{2^{x+1}},x\in N,0\le x\le4\right\}\)
Bài 1: Tìm x biết: \(\left(-2\right)\cdot\left(x+1\right)-3\cdot\left(1-x\right)=4\)
Bài 2: Chứng minh rằng: \(\frac{3}{5}< \frac{1}{31}+\frac{1}{32}+\frac{1}{33}+...+\frac{1}{60}< \frac{4}{5}\)
Bài 1 :
\(\left(-2\right)\left(x+1\right)-3\left(1-x\right)=4\)
\(\Leftrightarrow-2x-2-3+3x=4\)
\(\Leftrightarrow x=4+2+3=9\)
Bài 2 :
Cho \(S=\frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}\)
\(\Leftrightarrow S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)\)
\(+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(\Rightarrow S< \left(\frac{1}{30}+\frac{1}{30}+...+\frac{1}{30}\right)+\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)\)
\(+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)
\(\Leftrightarrow S< \frac{10}{30}+\frac{10}{40}+\frac{10}{50}=\frac{47}{60}< \frac{48}{60}=\frac{4}{5}\)(1)
Lại có :
\(S=\left(\frac{1}{31}+\frac{1}{32}+...+\frac{1}{40}\right)+\left(\frac{1}{41}+\frac{1}{42}+...+\frac{1}{50}\right)\)
\(+\left(\frac{1}{51}+\frac{1}{52}+...+\frac{1}{60}\right)\)
\(\Leftrightarrow S>\left(\frac{1}{40}+\frac{1}{40}+...+\frac{1}{40}\right)+\left(\frac{1}{50}+\frac{1}{50}+...+\frac{1}{50}\right)\)
\(+\left(\frac{1}{60}+\frac{1}{60}+...+\frac{1}{60}\right)\)
\(\Leftrightarrow S>\frac{10}{40}+\frac{10}{50}+\frac{10}{60}=\frac{37}{60}>\frac{36}{60}=\frac{3}{5}\)(2)
Từ (1) và (2) , ta có :
\(\frac{3}{5}< S< \frac{4}{5}hay\frac{3}{5}< \frac{1}{31}+\frac{1}{32}+...+\frac{1}{60}< \frac{4}{5}\)
Nguyen Ribi Nkok Ngok Khôi Bùi nguyễn ngọc dinh Phùng Tuệ Minh Akai Haruma buithianhtho ?Amanda? Nguyễn Thành Trương Nguyễn Ngô Minh Trí
Tìm số nguyên x, nếu biết
\(\frac{^{2^{4-x}}}{16^5}=32^6\)
\(\frac{3^{2x+3}}{9^3}=9^{14}\)
\(\left(-2\right)^x=-\frac{\left(-8^4\right)}{\left(-32\right)^3}\)
\(\left(-5^x\right)=\frac{25^{10}}{\left(-5\right)^{17}}\)
\(\frac{2^{4-x}}{16^5}=32^6\)
=> \(\frac{2^{4-x}}{\left(2^4\right)^5}=\left(2^5\right)^6\)
=> \(\frac{2^{4-x}}{2^{20}}=2^{30}\)
=> \(2^{4-x}=2^{30}.2^{20}\)
=> \(2^{4-x}=2^{50}\)
=> 4 - x = 50
=> x = 4 - 50 = -46
\(\frac{3^{2x+3}}{9^3}=9^{14}\)
=> \(\frac{3^{2x+3}}{\left(3^2\right)^3}=\left(3^2\right)^{14}\)
=> \(\frac{3^{2x+3}}{3^6}=3^{28}\)
=> \(3^{2x+3}=3^{28}.3^6\)
=> \(3^{2x+3}=3^{34}\)
=> 2x + 3 = 34
=> 2x = 34 - 3
=> 2x = 31
=> x = 31/2