Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 11:09

a) Hai bất phương trình bài cho là bất phương trình bậc nhất hai ẩn.

b) (1; 1) là một nghiệm chung của hai BPT (1) và (2) vì:

Thay x=1;y=1 vào (1) ta được: 1-1<3 (Luôn đúng)

Thay x=1; y=1 vào (2) ta được: 1+2.1>-2 (Luôn đúng)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 14:59

a) Hệ \(\left\{ \begin{array}{l}x < 0\\y \ge 0\end{array} \right.\) gồm hai bất phương trình bậc nhất hai ẩn là \(x < 0\) và \(y \ge 0\)

=> Hệ trên là hệ bất phương trình bậc nhất hai ẩn.

b) Hệ \(\left\{ \begin{array}{l}x + {y^2} < 0\\y - x > 1\end{array} \right.\) không là hệ bất phương trình bậc nhất hai ẩn vì \(x + {y^2} < 0\) không là bất phương trình bậc nhất hai ẩn (chứa \({y^2}\))

c) Hệ \(\left\{ \begin{array}{l}x + y + z < 0\\y < 0\end{array} \right.\) không là hệ bất phương trình bậc nhất hai ẩn vì \(x + y + z < 0\) có 3 ẩn không là bất phương trình bậc nhất hai ẩn.

d) Ta có:

 \(\left\{ \begin{array}{l} - 2x + y < {3^2}\\{4^2}x + 3y < 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2x + y < 9\\16x + 3y < 1\end{array} \right.\)

Đây là hệ bất phương trình bậc nhất hai ẩn và gồm hai bất phương trình bậc nhất hai ẩn là \( - 2x + y < 9\) và \(16x + 3y < 1\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 15:03

Ta thấy hệ \(\left\{ \begin{array}{l}x - y < 0\\2y \ge 0\end{array} \right.\) là hệ bất phương trình bậc nhất hai ẩn với các bất phương trình bậc nhất hai ẩn là \(x - y < 0;2y \ge 0\).

=> Chọn A.

Đáp án B loại vì \(3x + {y^3} < 0\) chứa \(y^3\).

Đáp án C loại vì \({y^2} + 3 < 0\) chứa \(y^2\).

Đáp án D loại vì \( - {x^3} + y < 4\) chứa \(x^3\).

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
24 tháng 9 2023 lúc 22:18

Tham khảo:

a) Biểu diễn từng miền nghiệm của mỗi bất phương trình trên mặt phẳng Oxy.

 

Miền không gạch chéo (bao gồm cạnh AB, tia Ay, Bx) trong hình trên là phần giao của các miền nghiệm và cũng là phần biểu diễn nghiệm của hệ bất phương trình đã cho.

b) Biểu diễn từng miền nghiệm của mỗi bất phương trình trên mặt phẳng Oxy.

 

Miền không gạch chéo (không bao gồm cạnh, các bờ) trong hình trên là phần giao của các miền nghiệm và cũng là phần biểu diễn nghiệm của hệ bất phương trình đã cho.

 c) Biểu diễn từng miền nghiệm của mỗi bất phương trình trên mặt phẳng Oxy.

 

 Miền không gạch chéo (miền tứ giác ABCD, bao gồm cả các cạnh) trong hình trên là phần giao của các miền nghiệm và cũng là phần biểu diễn nghiệm của hệ bất phương trình đã cho.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 11:12

Hình 12a

Ta thấy các đường thẳng trên hình là \(y = 1;x = 2;y =  - x + 1\)

Từ các phương trình trên thì ta chọn luôn là câu c mà không cần xét tiếp.

Hình 12b.

Ta thấy các đường thẳng trên hình là \(y =  - 1;x =  - 3;x + y =  - 2\)

Từ các phương trình trên thì ta chọn luôn là câu a mà không cần xét tiếp

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 11:10

a) Thay \(x = 0,y = 2\) vào hệ \(\left\{ \begin{array}{l}3x + 2y \ge  - 6\\x + 4y > 4\end{array} \right.\) ta được:

\(\left\{ \begin{array}{l}3.0 + 2.2 \ge  - 6\\0 + 4.2 > 4\end{array} \right.\) (Đúng)

Thay \(x = 1,y = 0\) vào hệ \(\left\{ \begin{array}{l}3x + 2y \ge  - 6\\x + 4y > 4\end{array} \right.\) ta được:

\(\left\{ \begin{array}{l}3.1 + 2.0 \ge  - 6\\1 + 4.0 > 4\left( {Sai} \right)\end{array} \right.\)

Vậy \(\left( {0;2} \right)\) là nghiệm của hệ còn \(\left( {1;0} \right)\) không là nghiệm.

b) Thay \(x =  - 1,y =  - 3\) vào hệ \(\left\{ \begin{array}{l}4x + y \le  - 3\\ - 3x + 5y \ge  - 12\end{array} \right.\) ta được:

\(\left\{ \begin{array}{l}4.\left( { - 1} \right) + \left( { - 3} \right) \le  - 3\\ - 3\left( { - 1} \right) + 5.\left( { - 3} \right) \ge  - 12\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - 7 \le  - 3\\ - 12 \ge  - 12\end{array} \right.\) (Đúng)

Thay \(x = 0,y =  - 3\) vào hệ \(\left\{ \begin{array}{l}4x + y \le  - 3\\ - 3x + 5y \ge  - 12\end{array} \right.\) ta được:

\(\left\{ \begin{array}{l}4.0 + \left( { - 3} \right) \le  - 3\\ - 3.0 + 5.\left( { - 3} \right) \ge  - 12\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - 3 \le  - 3\\ - 15 \ge  - 12\left( {Sai} \right)\end{array} \right.\)

Vậy \(\left( { - 1; - 3} \right)\) là nghiệm của hệ còn \(\left( {0; - 3} \right)\) không là nghiệm.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 15:00

 

a)

Xác định miền nghiệm của BPT \(y - x <  - 1\)

+ Vẽ đường thẳng d: \(y-x=  - 1\) đi qua A(1;0) và B(0;-1)

+ Vì \(0-0= 0 > - 1\) nên tọa độ điểm O(0;0) không thỏa mãn BPT \(y - x <  - 1\)

Do đó, miền nghiệm của BPT \(y - x <  - 1\) là nửa mặt phẳng bờ d không chứa gốc tọa độ O.

Miền nghiệm của BPT \(x > 0\) là nửa mặt phẳng bên phải Oy (không kể trục Oy).

Miền nghiệm của BPT \(y < 0\) là nửa mặt phẳng dưới Ox (không kể trục Ox).

Khi đó miền nghiệm của hệ bất phương trình đã cho là miền không gạch (Không kể đoạn thẳng AB và các trục tọa độ).

 

b)

Miền nghiệm của BPT \(x \ge 0\) là nửa mặt phẳng bờ Oy chứa điểm (1;0) (kể cả trục Oy).

Miền nghiệm của BPT \(y \ge 0\) là nửa mặt phẳng bờ Ox chứa điểm (0;1) (kể cả trục Ox).

Xác định miền nghiệm của bất phương trình \(2x + y \le 4\)

+ Vẽ đường thẳng d: \(2x + y = 4\) đi qua A(2;0) và B(0;4)

+ Vì \(2.0 + 0 = 0 < 4\) nên tọa độ điểm O(0;0) thỏa mãn BPT \(2x + y \le 4\)

Do đó, miền nghiệm của bất phương trình \(2x + y \le 4\) là nửa mặt phẳng bờ d chứa gốc tọa độ O.

Vậy miền nghiệm của hệ bất phương trình đã cho là miền tam giác OAB (kể cả các đoạn thẳng OA, OB, AB).

 

c)

Miền nghiệm của bất phương trình \(x \ge 0\) là nửa mặt phẳng bên phải Oy (kể cả trục Oy).

Xác định miền nghiệm của bất phương trình \(x + y > 5\)

+ Vẽ đường thẳng d: \(x + y = 5\)

+ Vì \(0 + 0 = 0 < 5\) nên tọa độ điểm O(0;0) không thỏa mãn bất phương trình \(x + y > 5\).

Do đó, miền nghiệm của BPT \(x + y > 5\) là nửa mặt phẳng bờ d không chứa gốc tọa độ O.

Xác định miền nghiệm của bất phương trình \(x - y < 0\)

+ Vẽ đường thẳng d: \(x - y = 0\)

+ Vì \(1 - 0 = 1 > 0\) nên tọa độ điểm (1;0) không thỏa mãn bất phương trình \(x - y < 0\)

Do đó, miền nghiệm của bất phương trình \(x - y < 0\) là nửa mặt phẳng bờ d’ không chứa điểm (1;0).

Vậy miền nghiệm của hệ bất phương trình đã cho là miền màu trắng (không kể d và d’)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 11:15

a) Vẽ các đường thẳng \(2x - 3y = 6;2x + y = 2\) (nét đứt)

Thay tọa độ điểm O vào các bất phương trình trong hệ.

Ta thấy: 2.0-3.0

=> O thuộc miền nghiệm của cả 2 bất phương trình

Miền nghiệm:

 

b)

Vẽ các đường thẳng

\(4x + 10y \le 20 \Leftrightarrow y =  - \frac{2}{5}x + 2\) (nét liền)

\(x - y = 4 \Leftrightarrow y = x - 4\)(nét liền)

\(x =  - 2\)(nét liền)

Thay tọa độ điểm O vào các bất phương trình trong hệ.

Ta thấy: 4.0+10.0-2

=> O thuộc miền nghiệm của cả 3 bất phương trình

Miền nghiệm:

 

c)

Vẽ các đường thẳng

\(x - 2y = 5 \Leftrightarrow y = \frac{1}{2}x - 5\) (nét liền)

\(x + y = 2 \Leftrightarrow y =  - x + 2\)(nét liền)

\(y = 3\)(nét liền)

Và trục Oy

Thay tọa độ O vào bất phương trình \(x - 2y \le 5\)

=> O thuộc miền nghiệm của bất phương trình trên.

Thay tọa độ O vào \(x + y \ge 2\)

=> O không thuộc miền nghiệm của bất phương trình trên

Lấy phần bên phải trục Oy và bên dưới đường thẳng y=3

Miền nghiệm:

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
1 tháng 10 2023 lúc 21:00

(1;1) không thuộc miền nghiệm vì 1+1=2>2 (Vô lý) => Loại A

(2;0) không thuộc miền nghiệm vì 2+0=2>2 (Vô lý) => Loại B

(3;2) thuộc miền nghiệm vì: 3+2 =5 > 2 (đúng) và \(3 - 2 = 1 \ge 1\) (đúng)

(3;-2) không thuộc miền nghiệm vì 3+ (-2)=1>2 (Vô lý) => Loại D

Chọn C.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 15:04

Thay tọa độ điểm (0;0) vào ta được: \(\left\{ \begin{array}{l}0 - 0 <  - 3\left( {ktm} \right)\\2.0 \ge  - 4\left( {tm} \right)\end{array} \right.\)

=> Loại A

Thay tọa độ điểm (-2;1) vào ta được: \(\left\{ \begin{array}{l} - 2 - 1 <  - 3\left( {ktm} \right)\\2.1 \ge  - 4\left( {tm} \right)\end{array} \right.\)

=> Loại B.

Thay tọa độ điểm (3;-1) vào ta được: \(\left\{ \begin{array}{l}3 - \left( { - 1} \right) <  - 3\left( {ktm} \right)\\2.\left( { - 1} \right) \ge  - 4\left( {tm} \right)\end{array} \right.\)

Loại C

Thay tọa độ điểm (-3;1) vào ta được: \(\left\{ \begin{array}{l} - 3 - 1 <  - 3\left( {tm} \right)\\2.1 \ge  - 4\left( {tm} \right)\end{array} \right.\)

Chọn D.