Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 15:03

Ta thấy hệ \(\left\{ \begin{array}{l}x - y < 0\\2y \ge 0\end{array} \right.\) là hệ bất phương trình bậc nhất hai ẩn với các bất phương trình bậc nhất hai ẩn là \(x - y < 0;2y \ge 0\).

=> Chọn A.

Đáp án B loại vì \(3x + {y^3} < 0\) chứa \(y^3\).

Đáp án C loại vì \({y^2} + 3 < 0\) chứa \(y^2\).

Đáp án D loại vì \( - {x^3} + y < 4\) chứa \(x^3\).

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
24 tháng 9 2023 lúc 14:59

a) Hệ \(\left\{ \begin{array}{l}x < 0\\y \ge 0\end{array} \right.\) gồm hai bất phương trình bậc nhất hai ẩn là \(x < 0\) và \(y \ge 0\)

=> Hệ trên là hệ bất phương trình bậc nhất hai ẩn.

b) Hệ \(\left\{ \begin{array}{l}x + {y^2} < 0\\y - x > 1\end{array} \right.\) không là hệ bất phương trình bậc nhất hai ẩn vì \(x + {y^2} < 0\) không là bất phương trình bậc nhất hai ẩn (chứa \({y^2}\))

c) Hệ \(\left\{ \begin{array}{l}x + y + z < 0\\y < 0\end{array} \right.\) không là hệ bất phương trình bậc nhất hai ẩn vì \(x + y + z < 0\) có 3 ẩn không là bất phương trình bậc nhất hai ẩn.

d) Ta có:

 \(\left\{ \begin{array}{l} - 2x + y < {3^2}\\{4^2}x + 3y < 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l} - 2x + y < 9\\16x + 3y < 1\end{array} \right.\)

Đây là hệ bất phương trình bậc nhất hai ẩn và gồm hai bất phương trình bậc nhất hai ẩn là \( - 2x + y < 9\) và \(16x + 3y < 1\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 11:09

a) Hai bất phương trình bài cho là bất phương trình bậc nhất hai ẩn.

b) (1; 1) là một nghiệm chung của hai BPT (1) và (2) vì:

Thay x=1;y=1 vào (1) ta được: 1-1<3 (Luôn đúng)

Thay x=1; y=1 vào (2) ta được: 1+2.1>-2 (Luôn đúng)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
30 tháng 9 2023 lúc 23:09

Bước 1: Mở trang Geoebra

Bước 2: Nhập bất phương trình \(x - 2y + 3 \le 0\) vào ô

Và bấm enter, màn hình sẽ hiển thị như hình dưới. Miền nghiệm của bất phương trình \(x - 2y + 3 \le 0\) là miền được tô màu. Đường nét liền biểu thị miền nghiệm chứa các điểm nằm trên đường thẳng \(x - 2y + 3 = 0\).

Bước 3: Tiếp tục nhập từng bất phương trình còn lại như sau:

x+3y>-2; \(x \le 0\)(x<=0). Khi đó màn hình sẽ hiển thị như hình dưới.

Miền nghiệm của hệ là miền được tô màu đậm nhất. Đường nét đứt biểu thị miền nghiệm không chứa các điểm nằm trên đường thẳng \(x + 3y =  - 2\). Đường nét liền \(x = 0\) (trục Oy) biểu thị các điểm nằm trên trục Oy cũng thuộc miền nghiệm.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
1 tháng 10 2023 lúc 21:00

(1;1) không thuộc miền nghiệm vì 1+1=2>2 (Vô lý) => Loại A

(2;0) không thuộc miền nghiệm vì 2+0=2>2 (Vô lý) => Loại B

(3;2) thuộc miền nghiệm vì: 3+2 =5 > 2 (đúng) và \(3 - 2 = 1 \ge 1\) (đúng)

(3;-2) không thuộc miền nghiệm vì 3+ (-2)=1>2 (Vô lý) => Loại D

Chọn C.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 11:10

a) Thay \(x = 0,y = 2\) vào hệ \(\left\{ \begin{array}{l}3x + 2y \ge  - 6\\x + 4y > 4\end{array} \right.\) ta được:

\(\left\{ \begin{array}{l}3.0 + 2.2 \ge  - 6\\0 + 4.2 > 4\end{array} \right.\) (Đúng)

Thay \(x = 1,y = 0\) vào hệ \(\left\{ \begin{array}{l}3x + 2y \ge  - 6\\x + 4y > 4\end{array} \right.\) ta được:

\(\left\{ \begin{array}{l}3.1 + 2.0 \ge  - 6\\1 + 4.0 > 4\left( {Sai} \right)\end{array} \right.\)

Vậy \(\left( {0;2} \right)\) là nghiệm của hệ còn \(\left( {1;0} \right)\) không là nghiệm.

b) Thay \(x =  - 1,y =  - 3\) vào hệ \(\left\{ \begin{array}{l}4x + y \le  - 3\\ - 3x + 5y \ge  - 12\end{array} \right.\) ta được:

\(\left\{ \begin{array}{l}4.\left( { - 1} \right) + \left( { - 3} \right) \le  - 3\\ - 3\left( { - 1} \right) + 5.\left( { - 3} \right) \ge  - 12\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - 7 \le  - 3\\ - 12 \ge  - 12\end{array} \right.\) (Đúng)

Thay \(x = 0,y =  - 3\) vào hệ \(\left\{ \begin{array}{l}4x + y \le  - 3\\ - 3x + 5y \ge  - 12\end{array} \right.\) ta được:

\(\left\{ \begin{array}{l}4.0 + \left( { - 3} \right) \le  - 3\\ - 3.0 + 5.\left( { - 3} \right) \ge  - 12\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l} - 3 \le  - 3\\ - 15 \ge  - 12\left( {Sai} \right)\end{array} \right.\)

Vậy \(\left( { - 1; - 3} \right)\) là nghiệm của hệ còn \(\left( {0; - 3} \right)\) không là nghiệm.

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
24 tháng 9 2023 lúc 11:16

Tham khảo:

Bước 1: Xác định miền nghiệm của bất phương trình \(x \ge 0\)

Miền nghiệm của bất phương trình \(x \ge 0\) là nửa mặt phẳng bờ Oy chứa điểm (1;0).

Bước 2: Xác định miền nghiệm của bất phương trình \(y > 0\)

Miền nghiệm của bất phương trình \(y > 0\) là nửa mặt phẳng bờ Ox chứa điểm (0;1) không kể trục Ox.

Bước 3: Xác định miền nghiệm của bất phương trình \(x + y \le 100\)

+ Vẽ đường thẳng d: x+y=100

+ Vì 0+0=0

Do đó, miền nghiệm của bất phương trình \(x + y \le 100\) là nửa mặt phẳng bờ d chứa gốc tọa độ O.

Bước 4: Xác định miền nghiệm của bất phương trình \(2x + y < 120\)

Tương tự miền nghiệm của bất phương trình \(2x + y < 120\) là nửa mặt phẳng bờ d’ chúa gốc tọa độ O. (không kể đường thẳng d’).

Khi đó miền không bị gạch là giao của các miền nghiệm của các bất phương trình trong hệ. Vậy miền không bị gạch là miền nghiệm của hệ bất phương trình đã cho (Không kể đoạn thẳng OC và CD).

Quoc Tran Anh Le
Xem chi tiết
Kiều Sơn Tùng
24 tháng 9 2023 lúc 22:16

Tham khảo:

Vẽ đường thẳng \(d:x + y - 3 = 0\) đi qua hai điểm \(A(0;3)\) và \(B\left( {1;2} \right)\)

Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \(0 + 0 - 3 =  - 3 < 0\)

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng kể cả bờ \(d\), chứa gốc tọa độ O

(miền không gạch chéo trên hình)

Vẽ đường thẳng \(d': - 2x + y + 3 = 0\) đi qua hai điểm \(A(1; - 1)\) và \(B\left( {2;1} \right)\)

Xét gốc tọa độ \(O(0;0).\) Ta thấy \(O \notin \Delta \) và \( - 2.0 + 0 + 3 = 3 > 0\)

Do đó, miền nghiệm của bất phương trình là nửa mặt phẳng không kể bờ \(d'\), chứa gốc tọa độ O

(miền không gạch chéo trên hình)

 

Vậy miền không gạch chéo trong hình trên là miền nghiệm của hệ bất phương trình đã cho.

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
1 tháng 10 2023 lúc 21:02

+ Biểu diễn miền nghiệm của BPT \(x - y \le 6\)

Bước 1: Vẽ đường thẳng \(d:x - y = 6\) trên mặt phẳng tọa độ Õy

Bước 2: Lấy O(0;0) không thuộc d, ta có: \(0 - 0 = 0 \le 6\) => điểm O(0;0) thuộc miền nghiệm

=> Miền nghiệm của BPT \(x - y \le 6\) là nửa mp bờ d, chứa gốc tọa độ.

+ Tương tự, ta có miền nghiệm của BPT \(2x - y \le 2\) là nửa mp bờ \(d':2x - y = 0\), chứa gốc tọa độ.

+ Miền nghiệm của BPT \(x \ge 0\) là nửa mp bên phải Oy (tính cả trục Oy)

+ Miền nghiệm của BPT \(y \ge 0\) là nửa mp phía trên Ox (tính cả trục Ox)

Biểu diễn trên cùng một mặt phẳng tọa độ và gạch bỏ các miền không là nghiệm của từng BPT, ta được:

 

Miền nghiệm của hệ bất phương trình đã cho là miền tứ giác OABC (miền không bị gạch) với \(A(0;6),B(\frac{8}{3};\frac{{10}}{3}),C(1;0)\)

b)

Thay tọa độ các điểm \(O(0;0),A(0;6),B(\frac{8}{3};\frac{{10}}{3}),C(1;0)\) và biểu thức \(F(x;y) = 2x + 3y\) ta được:

\(\begin{array}{l}F(0;0) = 2.0 + 3.0 = 0\\F(0;6) = 2.0 + 3.6 = 18\\F(\frac{8}{3};\frac{{10}}{3}) = 2.\frac{8}{3} + 3.\frac{{10}}{3} = \frac{{46}}{3}\\F(1;0) = 2.1 + 3.0 = 2\end{array}\)

\( \Rightarrow \min F = 0\),  \(\max F = 18\)

Vậy trên miền D, giá trị nhỏ nhất của F bằng 0, giá trị lớn nhất của F bằng \(18\).

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
23 tháng 9 2023 lúc 11:10

Vẽ đường thẳng \(3x - y =  - 3\) (nét đứt)

Thay tọa độ O vào \(3x - y >  - 3\) ta được \(3.0 - 0 >  - 3\) (Đúng)

Gạch đi phần không chứa O

Vẽ đường thẳng \( - 2x + 3y = 6\) (nét đứt)

Thay tọa độ O vào \( - 2x + 3y < 6\) ta được \( - 2.0 + 3.0 < 6\) (Đúng)

Gạch đi phần không chứa O

Vẽ đường thẳng \(2x + y =  - 4\)(nét đứt)

Thay tọa độ O vào \(2x + y >  - 4\) ta được \(2.0 + 0 >  - 4\) (Đúng)

Gạch đi phần không chứa O

Miền nghiệm của hệ là phần không bị gạch chéo: