Cho \(x=1+\sqrt[3]{3}\)\(+\sqrt[3]{9}\)
Tính P=(x^3-3x^2+6x-3)^1945 +2020
Cho x = \(1+\sqrt[3]{3}+\sqrt[3]{9}\)
Tính P = \(\left(x^3-3x^2-6x-3\right)^{1945}+2020\)
\(x-1=\sqrt[3]{9}+\sqrt[3]{3}\)
=> \(\left(x-1\right)^3=9+3+3.3.\left(x-1\right)\)
<=> \(x^3-3x^2+3x+1=3+9x\)
<=> \(x^3-3x^2-6x-3=-1\)
=> \(P=-1+2020=2019\)
Cho \(x=\dfrac{1}{\sqrt[3]{3-2\sqrt{2}}}+\sqrt[3]{3-2\sqrt{2}}\)
Tính \(P=\left(2x^3-6x+2008\right)^{2020}\)
Giúp với ạ
Đề bài không chính xác rồi em
Muốn khử được căn ba thì trong biểu thức \(\left(2x^2-6x+2008\right)^{...}\) phải có bậc 3, mà ở đây chỉ có bậc 2
\(x=\sqrt[3]{3+2\sqrt[]{2}}+\sqrt[3]{3-2\sqrt[]{2}}\)
\(x^3=6+3\left(\sqrt[3]{3+2\sqrt[]{2}}+\sqrt[3]{3-2\sqrt[]{2}}\right)\sqrt[3]{\left(3+2\sqrt[]{2}\right)\left(3-2\sqrt[]{2}\right)}\)
\(x^3=6+3x\)
\(x^3-3x=6\)
\(P=\left[2\left(x^3-3x\right)+2008\right]^{2020}=\left(2.6+2008\right)^{2020}=2020^{2020}\)
Cho x = 1 + 3√3 + 3√9. Tính P = (x3−3x2−6x−3)1945 + 2020
Giúp mik vs mn
Từ bài này bạn hãy tham khảo để giải quyết vấn đề ở bài trên nha
https://olm.vn/hoi-dap/detail/190292158585.html
Câu hỏi của titanic - Toán lớp 9 - Học toán với OnlineMath
1) \(\sqrt{x^2-4x+5}+3=4x-x^2\)
2) \(4\sqrt{x^2-6+6}=x^2-6x +9\)
3) \(\sqrt{x^2-3x^3}+\sqrt{x^2-3x+6}=3\)
4) \(\sqrt[3]{2-x}=1-\sqrt{x-1}\)
Cho \(x=1+\sqrt[3]{2}+\sqrt[3]{4}.\) Tính \(A=\sqrt{x^3-3x^2-3x+2020}.\)
giải phương trình :
a, \(\sqrt{x+1}+x+3=\sqrt{1-x}+3\sqrt{1-x^2}\)
b,\(\left(2x-3\right)\sqrt{3+x}+2x\sqrt{3-x}=6x-8+\sqrt{9-x^2}\)
c, \(2x^2-5x+22=5\sqrt{x^3-11x +20}\)
d, \(x^3-3x^2+2\sqrt{\left(x+2\right)^3}=6x\)
Bài 1 : cho \(x=\sqrt{\frac{3-\sqrt{5}}{3+\sqrt{5}}}\)
Tính B = \(x^5-6x^4+12x^3-4x^2-13x+2020\)
Bài 2 : Cho f ( x )= \(\left(x^3+3x-15\right)^{2020}\)
Tính f ( a ) biết a = \(\sqrt[3]{7-\sqrt{50}}+\sqrt[3]{7+\sqrt{50}}\)
giải pt :
a, \(x^2+5x+2=4\sqrt{x^3+3x^2+x-1}\)
b, \(\sqrt{x+1}+x+3=\sqrt{1-x}+3\sqrt{1-x^2}\)
c,\(\left(2x-3\right)\sqrt{3+x}+2x\sqrt{3-x}=6x-8+\sqrt{9-x^2}\)
a, ĐK: \(\left(x+1\right)\left(x^2+2x-1\right)\ge0\)
\(x^2+5x+2=4\sqrt{x^3+3x^2+x-1}\)
\(\Leftrightarrow x^2+2x-1+3\left(x+1\right)-4\sqrt{\left(x+1\right)\left(x^2+2x-1\right)}=0\)
TH1: \(x\ge-1\)
\(pt\Leftrightarrow\left(\sqrt{x^2+2x-1}-\sqrt{x+1}\right)\left(\sqrt{x^2+2x-1}-3\sqrt{x+1}\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2+2x-1}=\sqrt{x+1}\\\sqrt{x^2+2x-1}=3\sqrt{x+1}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+2x-1=x+1\\x^2+2x-1=9x+9\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x^2+x-2=0\\x^2-7x-10=0\end{matrix}\right.\)
\(\Leftrightarrow...\)
TH2: \(x< -1\)
\(pt\Leftrightarrow\left(\sqrt{-x^2-2x+1}-\sqrt{-x-1}\right)\left(\sqrt{-x^2-2x+1}-3\sqrt{-x-1}\right)=0\)
\(\Leftrightarrow...\)
Bài này dài nên ... cho nhanh nha, đoạn sau dễ rồi
Giải các phương trình dưới đây
1, \(\sqrt{9x^2-6x+2}+\sqrt{45x^2-30x+9}=\sqrt{6x-9x^2+8}\)
2,\(\sqrt{2x^2-4x+3}+\sqrt{3x^2-6x+7}=2-x^2+2x\)
3, \(\sqrt{6y-y^2-5}-\sqrt{x^2-6x+10}=1\) (x=3 ; y=3)